Suppr超能文献

π介子氦原子的激光光谱学。

Laser spectroscopy of pionic helium atoms.

机构信息

Max-Planck-Institut für Quantenoptik, Garching, Germany.

McKinsey and Company, Munich, Germany.

出版信息

Nature. 2020 May;581(7806):37-41. doi: 10.1038/s41586-020-2240-x. Epub 2020 May 6.

Abstract

Charged pions are the lightest and longest-lived mesons. Mesonic atoms are formed when an orbital electron in an atom is replaced by a negatively charged meson. Laser spectroscopy of these atoms should permit the mass and other properties of the meson to be determined with high precision and could place upper limits on exotic forces involving mesons (as has been done in other experiments on antiprotons). Determining the mass of the π meson in particular could help to place direct experimental constraints on the mass of the muon antineutrino. However, laser excitations of mesonic atoms have not been previously achieved because of the small number of atoms that can be synthesized and their typically short (less than one picosecond) lifetimes against absorption of the mesons into the nuclei. Metastable pionic helium (πHe) is a hypothetical three-body atom composed of a helium-4 nucleus, an electron and a π occupying a Rydberg state of large principal (n ≈ 16) and orbital angular momentum (l ≈ n - 1) quantum numbers. The πHe atom is predicted to have an anomalously long nanosecond-scale lifetime, which could allow laser spectroscopy to be carried out. Its atomic structure is unique owing to the absence of hyperfine interactions between the spin-0 π and the He nucleus. Here we synthesize πHe in a superfluid-helium target and excite the transition (n, l) = (17, 16) → (17, 15) of the π-occupied πHe orbital at a near-infrared resonance frequency of 183,760 gigahertz. The laser initiates electromagnetic cascade processes that end with the nucleus absorbing the π and undergoing fission. The detection of emerging neutron, proton and deuteron fragments signals the laser-induced resonance in the atom, thereby confirming the presence of πHe. This work enables the use of the experimental techniques of quantum optics to study a meson.

摘要

带电介子是最轻和寿命最长的介子。当原子中的一个轨道电子被带负电荷的介子取代时,就会形成介子原子。这些原子的激光光谱学应该能够以高精度确定介子的质量和其他性质,并对涉及介子的奇异力施加上限(正如在其他反质子实验中所做的那样)。特别是确定π介子的质量可以帮助对μ子反中微子的质量施加直接实验限制。然而,由于可以合成的原子数量很少,并且它们通常对吸收到原子核中的介子的吸收具有较短的寿命(不到一个皮秒),因此之前没有实现介子原子的激光激发。亚稳的π 氦(πHe)是一种假设的三体原子,由一个氦-4 核、一个电子和一个占据大主量子数(n≈16)和轨道角动量(l≈n-1)量子数的π组成。预测πHe 原子具有异常长的纳秒级寿命,这可以允许进行激光光谱学研究。由于自旋为 0 的π和氦核之间不存在超精细相互作用,因此其原子结构是独特的。在这里,我们在超流氦靶中合成πHe,并在近红外共振频率 183760 千兆赫处激发π占据的πHe 轨道的跃迁(n,l)=(17,16)→(17,15)。激光引发电磁级联过程,最终导致原子核吸收π并发生裂变。检测到新出现的中子、质子和氘核碎片表明原子中存在激光诱导共振,从而证实了πHe 的存在。这项工作使量子光学的实验技术能够用于研究介子。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验