Suppr超能文献

无固体壁的液体流动与控制。

Liquid flow and control without solid walls.

机构信息

Université de Strasbourg, CNRS, ISIS, Strasbourg, France.

Université de Strasbourg, CNRS, IPCMS UMR 7504, Strasbourg, France.

出版信息

Nature. 2020 May;581(7806):58-62. doi: 10.1038/s41586-020-2254-4. Epub 2020 May 6.

Abstract

When miniaturizing fluidic circuitry, the solid walls of the fluid channels become increasingly important because they limit the flow rates achievable for a given pressure drop, and they are prone to fouling. Approaches for reducing the wall interactions include hydrophobic coatings, liquid-infused porous surfaces, nanoparticle surfactant jamming, changes to surface electronic structure, electrowetting, surface tension pinning and use of atomically flat channels. A better solution may be to avoid the solid walls altogether. Droplet microfluidics and sheath flow achieve this but require continuous flow of the central liquid and the surrounding liquid. Here we demonstrate an approach in which aqueous liquid channels are surrounded by an immiscible magnetic liquid, both of which are stabilized by a quadrupolar magnetic field. This creates self-healing, non-clogging, anti-fouling and near-frictionless liquid-in-liquid fluidic channels. Manipulation of the field provides flow control, such as valving, splitting, merging and pumping. The latter is achieved by moving permanent magnets that have no physical contact with the liquid channel. We show that this magnetostaltic pumping method can be used to transport whole human blood with very little damage due to shear forces. Haemolysis (rupture of blood cells) is reduced by an order of magnitude compared with traditional peristaltic pumping, in which blood is mechanically squeezed through a plastic tube. Our liquid-in-liquid approach provides new ways to transport delicate liquids, particularly when scaling channels down to the micrometre scale, with no need for high pressures, and could also be used for microfluidic circuitry.

摘要

在缩小流道尺寸时,流道的固体壁面变得越来越重要,因为它们限制了给定压降下可实现的流速,而且容易堵塞。减少壁面相互作用的方法包括疏油涂层、液体注入多孔表面、纳米颗粒表面活性剂堵塞、改变表面电子结构、电润湿、表面张力固定和使用原子级平坦通道。更好的解决方案可能是完全避免使用固体壁面。液滴微流控和鞘流可以实现这一点,但需要连续流动的中心液体和周围液体。在这里,我们展示了一种方法,其中水相液体通道被不混溶的磁性液体包围,两者都由四极磁场稳定。这创建了自修复、不堵塞、防污和近无摩擦的液-液流道。通过控制磁场,可以实现流动控制,如阀、分流、合并和泵送。通过移动与液体通道没有物理接触的永磁体来实现后者。我们表明,这种磁致伸缩泵送方法可用于输送全血,几乎不会因剪切力而造成损伤。与传统的蠕动泵送相比,溶血(血细胞破裂)减少了一个数量级,蠕动泵送通过塑料管机械挤压血液。我们的液-液方法提供了新的方法来输送脆弱的液体,特别是在将通道缩小到微米级时,不需要高压,也可用于微流控电路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验