Jemaa Skander, Fredrickson Jill, Carano Richard A D, Nielsen Tina, de Crespigny Alex, Bengtsson Thomas
Genentech, Inc., South San Francisco, CA, USA.
F. Hoffman-La Roche Ltd., Basel, Switzerland.
J Digit Imaging. 2020 Aug;33(4):888-894. doi: 10.1007/s10278-020-00341-1.
F-Fluorodeoxyglucose-positron emission tomography (FDG-PET) is commonly used in clinical practice and clinical drug development to identify and quantify metabolically active tumors. Manual or computer-assisted tumor segmentation in FDG-PET images is a common way to assess tumor burden, such approaches are both labor intensive and may suffer from high inter-reader variability. We propose an end-to-end method leveraging 2D and 3D convolutional neural networks to rapidly identify and segment tumors and to extract metabolic information in eyes to thighs (whole body) FDG-PET/CT scans. The developed architecture is computationally efficient and devised to accommodate the size of whole-body scans, the extreme imbalance between tumor burden and the volume of healthy tissue, and the heterogeneous nature of the input images. Our dataset consists of a total of 3664 eyes to thighs FDG-PET/CT scans, from multi-site clinical trials in patients with non-Hodgkin's lymphoma (NHL) and advanced non-small cell lung cancer (NSCLC). Tumors were segmented and reviewed by board-certified radiologists. We report a mean 3D Dice score of 88.6% on an NHL hold-out set of 1124 scans and a 93% sensitivity on 274 NSCLC hold-out scans. The method is a potential tool for radiologists to rapidly assess eyes to thighs FDG-avid tumor burden.
F-氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)在临床实践和临床药物开发中常用于识别和量化代谢活跃的肿瘤。在FDG-PET图像中进行手动或计算机辅助肿瘤分割是评估肿瘤负荷的常用方法,但这些方法既耗费人力,而且不同阅片者之间的差异可能很大。我们提出一种端到端方法,利用二维和三维卷积神经网络快速识别和分割肿瘤,并在眼部至大腿(全身)FDG-PET/CT扫描中提取代谢信息。所开发的架构计算效率高,旨在适应全身扫描的尺寸、肿瘤负荷与健康组织体积之间的极端不平衡以及输入图像的异质性。我们的数据集总共包含3664例眼部至大腿的FDG-PET/CT扫描,来自非霍奇金淋巴瘤(NHL)和晚期非小细胞肺癌(NSCLC)患者的多中心临床试验。肿瘤由具有专业资格认证的放射科医生进行分割和评估。我们报告在1124例扫描的NHL验证集上平均三维骰子系数为88.6%,在274例NSCLC验证扫描上灵敏度为93%。该方法是放射科医生快速评估眼部至大腿FDG摄取肿瘤负荷的潜在工具。