Suppr超能文献

使用级联二维和三维卷积神经网络从全身氟代脱氧葡萄糖正电子发射断层显像/计算机断层扫描中进行肿瘤分割和特征提取

Tumor Segmentation and Feature Extraction from Whole-Body FDG-PET/CT Using Cascaded 2D and 3D Convolutional Neural Networks.

作者信息

Jemaa Skander, Fredrickson Jill, Carano Richard A D, Nielsen Tina, de Crespigny Alex, Bengtsson Thomas

机构信息

Genentech, Inc., South San Francisco, CA, USA.

F. Hoffman-La Roche Ltd., Basel, Switzerland.

出版信息

J Digit Imaging. 2020 Aug;33(4):888-894. doi: 10.1007/s10278-020-00341-1.

Abstract

F-Fluorodeoxyglucose-positron emission tomography (FDG-PET) is commonly used in clinical practice and clinical drug development to identify and quantify metabolically active tumors. Manual or computer-assisted tumor segmentation in FDG-PET images is a common way to assess tumor burden, such approaches are both labor intensive and may suffer from high inter-reader variability. We propose an end-to-end method leveraging 2D and 3D convolutional neural networks to rapidly identify and segment tumors and to extract metabolic information in eyes to thighs (whole body) FDG-PET/CT scans. The developed architecture is computationally efficient and devised to accommodate the size of whole-body scans, the extreme imbalance between tumor burden and the volume of healthy tissue, and the heterogeneous nature of the input images. Our dataset consists of a total of 3664 eyes to thighs FDG-PET/CT scans, from multi-site clinical trials in patients with non-Hodgkin's lymphoma (NHL) and advanced non-small cell lung cancer (NSCLC). Tumors were segmented and reviewed by board-certified radiologists. We report a mean 3D Dice score of 88.6% on an NHL hold-out set of 1124 scans and a 93% sensitivity on 274 NSCLC hold-out scans. The method is a potential tool for radiologists to rapidly assess eyes to thighs FDG-avid tumor burden.

摘要

F-氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)在临床实践和临床药物开发中常用于识别和量化代谢活跃的肿瘤。在FDG-PET图像中进行手动或计算机辅助肿瘤分割是评估肿瘤负荷的常用方法,但这些方法既耗费人力,而且不同阅片者之间的差异可能很大。我们提出一种端到端方法,利用二维和三维卷积神经网络快速识别和分割肿瘤,并在眼部至大腿(全身)FDG-PET/CT扫描中提取代谢信息。所开发的架构计算效率高,旨在适应全身扫描的尺寸、肿瘤负荷与健康组织体积之间的极端不平衡以及输入图像的异质性。我们的数据集总共包含3664例眼部至大腿的FDG-PET/CT扫描,来自非霍奇金淋巴瘤(NHL)和晚期非小细胞肺癌(NSCLC)患者的多中心临床试验。肿瘤由具有专业资格认证的放射科医生进行分割和评估。我们报告在1124例扫描的NHL验证集上平均三维骰子系数为88.6%,在274例NSCLC验证扫描上灵敏度为93%。该方法是放射科医生快速评估眼部至大腿FDG摄取肿瘤负荷的潜在工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c406/7522127/e45f1417c7fb/10278_2020_341_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验