Suppr超能文献

从短读下一代测序数据中检测体细胞结构变体。

Detection of somatic structural variants from short-read next-generation sequencing data.

出版信息

Brief Bioinform. 2021 May 20;22(3). doi: 10.1093/bib/bbaa056.

Abstract

Somatic structural variants (SVs), which are variants that typically impact >50 nucleotides, play a significant role in cancer development and evolution but are notoriously more difficult to detect than small variants from short-read next-generation sequencing (NGS) data. This is due to a combination of challenges attributed to the purity of tumour samples, tumour heterogeneity, limitations of short-read information from NGS and sequence alignment ambiguities. In spite of active development of SV detection tools (callers) over the past few years, each method has inherent advantages and limitations. In this review, we highlight some of the important factors affecting somatic SV detection and compared the performance of seven commonly used SV callers. In particular, we focus on the extent of change in sensitivity and precision for detecting different SV types and size ranges from samples with differing variant allele frequencies and sequencing depths of coverage. We highlight the reasons for why some SV callers perform well in some settings but not others, allowing our evaluation findings to be extended beyond the seven SV callers examined in this paper. As the importance of large SVs become increasingly recognized in cancer genomics, this paper provides a timely review on some of the most impactful factors influencing somatic SV detection that should be considered when choosing SV callers.

摘要

体细胞结构变异(SVs),即通常影响超过 50 个核苷酸的变异,在癌症的发展和进化中起着重要作用,但与来自短读长下一代测序(NGS)数据的小变异相比,更难检测到。这是由于肿瘤样本纯度、肿瘤异质性、NGS 短读信息的局限性以及序列比对模糊性等多种因素共同作用的结果。尽管在过去几年中,SV 检测工具(调用者)的开发一直很活跃,但每种方法都有其内在的优点和局限性。在这篇综述中,我们强调了影响体细胞 SV 检测的一些重要因素,并比较了七种常用的 SV 调用者的性能。特别是,我们重点关注不同变异等位基因频率和测序深度覆盖的样本中不同 SV 类型和大小范围的检测灵敏度和精度的变化程度。我们强调了为什么一些 SV 调用者在某些情况下表现良好而在其他情况下表现不佳的原因,从而使我们的评估结果能够超出本文中检查的七种 SV 调用者。随着大 SV 在癌症基因组学中的重要性日益被认识到,本文及时地综述了影响体细胞 SV 检测的一些最有影响力的因素,在选择 SV 调用者时应考虑这些因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca68/8138798/df2c0606bbe9/bbaa056f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验