Roche Sequencing Solutions, Pleasanton, CA, USA.
Apprise Biosciences, Menlo Park, CA, USA.
Commun Biol. 2020 May 7;3(1):213. doi: 10.1038/s42003-020-0896-2.
Single-cell omics provide insight into cellular heterogeneity and function. Recent technological advances have accelerated single-cell analyses, but workflows remain expensive and complex. We present a method enabling simultaneous, ultra-high throughput single-cell barcoding of millions of cells for targeted analysis of proteins and RNAs. Quantum barcoding (QBC) avoids isolation of single cells by building cell-specific oligo barcodes dynamically within each cell. With minimal instrumentation (four 96-well plates and a multichannel pipette), cell-specific codes are added to each tagged molecule within cells through sequential rounds of classical split-pool synthesis. Here we show the utility of this technology in mouse and human model systems for as many as 50 antibodies to targeted proteins and, separately, >70 targeted RNA regions. We demonstrate that this method can be applied to multi-modal protein and RNA analyses. It can be scaled by expansion of the split-pool process and effectively renders sequencing instruments as versatile multi-parameter flow cytometers.
单细胞组学提供了对细胞异质性和功能的深入了解。最近的技术进步加速了单细胞分析,但工作流程仍然昂贵且复杂。我们提出了一种方法,能够同时对数百万个细胞进行超高速率的单细胞标记,用于靶向分析蛋白质和 RNA。量子标记(QBC)通过在每个细胞内动态构建细胞特异性寡核苷酸条形码来避免单细胞的分离。使用最少的仪器(四个 96 孔板和多通道移液器),通过经典的分割池合成的连续循环,将细胞特异性代码添加到每个标记的细胞内分子中。在这里,我们展示了该技术在小鼠和人类模型系统中的效用,多达 50 种针对靶向蛋白的抗体,以及单独的 >70 个针对靶向 RNA 区域的抗体。我们证明了该方法可应用于多模态蛋白质和 RNA 分析。它可以通过扩展分割池过程进行扩展,并有效地将测序仪器作为通用的多参数流式细胞计。