Suppr超能文献

癌症中细胞外囊泡 PD-L1 介导的免疫逃逸。

Immune Escape Mediated by Exosomal PD-L1 in Cancer.

机构信息

Harvey Cushing Neurooncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, 02115, USA.

Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany.

出版信息

Adv Biosyst. 2020 Dec;4(12):e2000017. doi: 10.1002/adbi.202000017. Epub 2020 May 7.

Abstract

Extracellular vesicles (EVs) are now well established as important mediators of intercellular communication. EVs constitute a diverse group of secreted vesicles which function by the delivery of protein and nucleic acid cargoes from donor to recipient cells. In cancer, tumor cell-derived EVs are shown to promote disease progression by facilitating local reprogramming of the tumor microenvironment. EVs also have more distant systemic effects via transport in biofluids, and therefore have great potential as biomarkers for disease detection and monitoring. Recently, the discovery that EVs derived from glioblastoma cells can mediate immunosuppression by activation of immune checkpoint signaling and T cell dysfunction was reported. Mechanistically we showed that this occurs via direct binding of PD-L1 secreted in EVs, to its receptor PD1 expressed on the surface of activated T cells. This previously unidentified mechanism of tumor immunosuppression has been confirmed in subsequent independent studies, which have demonstrated the biologic importance of this mechanism across multiple tumor types. These studies have established a new and significant paradigm in which PD-L1 containing tumor cell-derived EVs cause immune suppression by the direct engagement of PD1 on T cells, decreasing their activation and providing a further barrier to protect tumors from T cell killing.

摘要

细胞外囊泡(EVs)现已被充分确认为细胞间通讯的重要介质。EVs 是一组多样化的分泌囊泡,通过将蛋白质和核酸货物从供体细胞传递到受体细胞来发挥功能。在癌症中,肿瘤细胞衍生的 EVs 通过促进肿瘤微环境的局部重编程来促进疾病进展。EVs 还通过在生物体液中的运输产生更远处的全身效应,因此具有作为疾病检测和监测的生物标志物的巨大潜力。最近,有报道称,源自神经胶质瘤细胞的 EVs 通过激活免疫检查点信号和 T 细胞功能障碍来介导免疫抑制。从机制上讲,我们表明这是通过 EV 中分泌的 PD-L1 与激活的 T 细胞表面表达的其受体 PD1 的直接结合而发生的。这种以前未被识别的肿瘤免疫抑制机制已在随后的独立研究中得到证实,这些研究证明了这种机制在多种肿瘤类型中的重要生物学意义。这些研究确立了一个新的重要范例,其中含有 PD-L1 的肿瘤细胞衍生 EVs 通过直接结合 T 细胞上的 PD1 导致免疫抑制,从而降低 T 细胞的激活,并为保护肿瘤免受 T 细胞杀伤提供了进一步的障碍。

相似文献

1
Immune Escape Mediated by Exosomal PD-L1 in Cancer.
Adv Biosyst. 2020 Dec;4(12):e2000017. doi: 10.1002/adbi.202000017. Epub 2020 May 7.
2
Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles.
Sci Adv. 2018 Mar 7;4(3):eaar2766. doi: 10.1126/sciadv.aar2766. eCollection 2018 Mar.
4
The role of exosomal PD-L1 in tumor progression and immunotherapy.
Mol Cancer. 2019 Oct 23;18(1):146. doi: 10.1186/s12943-019-1074-3.
6
Tumor-derived exosomes in the PD-1/PD-L1 axis: Significant regulators as well as promising clinical targets.
J Cell Physiol. 2021 Jun;236(6):4138-4151. doi: 10.1002/jcp.30197. Epub 2020 Dec 4.
9
Shedding Light on the Role of Exosomal PD-L1 (ExoPD-L1) in Cancer Progression: an Update.
Cell Biochem Biophys. 2024 Sep;82(3):1709-1720. doi: 10.1007/s12013-024-01340-7. Epub 2024 Jun 22.
10
Clinical Implications of Exosomal PD-L1 in Cancer Immunotherapy.
J Immunol Res. 2021 Feb 8;2021:8839978. doi: 10.1155/2021/8839978. eCollection 2021.

引用本文的文献

2
A game of hide-and-seek: how extracellular vesicles evade the immune system.
Drug Deliv Transl Res. 2025 Jan 22. doi: 10.1007/s13346-025-01789-w.
3
Decoding the secret of extracellular vesicles in the immune tumor microenvironment of the glioblastoma: on the border of kingdoms.
Front Immunol. 2024 Aug 29;15:1423232. doi: 10.3389/fimmu.2024.1423232. eCollection 2024.
4
Shedding Light on the Role of Exosomal PD-L1 (ExoPD-L1) in Cancer Progression: an Update.
Cell Biochem Biophys. 2024 Sep;82(3):1709-1720. doi: 10.1007/s12013-024-01340-7. Epub 2024 Jun 22.
6
Prospects of liquid biopsy in the prognosis and clinical management of gastrointestinal cancers.
Front Mol Biosci. 2024 May 6;11:1385238. doi: 10.3389/fmolb.2024.1385238. eCollection 2024.
8
Tumor-derived exosomal PD-L1: a new perspective in PD-1/PD-L1 therapy for lung cancer.
Front Immunol. 2024 Mar 18;15:1342728. doi: 10.3389/fimmu.2024.1342728. eCollection 2024.
9
Cellular nanovesicles for therapeutic immunomodulation: A perspective on engineering strategies and new advances.
Acta Pharm Sin B. 2023 May;13(5):1789-1827. doi: 10.1016/j.apsb.2022.08.020. Epub 2022 Aug 28.
10
Effects of glioblastoma-derived extracellular vesicles on the functions of immune cells.
Front Cell Dev Biol. 2023 Mar 7;11:1060000. doi: 10.3389/fcell.2023.1060000. eCollection 2023.

本文引用的文献

1
Myeloid-Derived Suppressive Cells Promote B cell-Mediated Immunosuppression via Transfer of PD-L1 in Glioblastoma.
Cancer Immunol Res. 2019 Dec;7(12):1928-1943. doi: 10.1158/2326-6066.CIR-19-0240. Epub 2019 Sep 17.
2
Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer.
Exp Mol Med. 2019 Aug 9;51(8):1-13. doi: 10.1038/s12276-019-0295-2.
3
Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory.
Cell. 2019 Apr 4;177(2):414-427.e13. doi: 10.1016/j.cell.2019.02.016.
4
Extracellular vesicles in the tumor microenvironment: old stories, but new tales.
Mol Cancer. 2019 Mar 30;18(1):59. doi: 10.1186/s12943-019-0980-8.
6
Brain Tumor Microenvironment and Host State: Implications for Immunotherapy.
Clin Cancer Res. 2019 Jul 15;25(14):4202-4210. doi: 10.1158/1078-0432.CCR-18-1627. Epub 2019 Feb 25.
9
Circulating Extracellular Vesicles in Human Disease.
N Engl J Med. 2018 Sep 6;379(10):958-966. doi: 10.1056/NEJMra1704286.
10
Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors.
Nat Med. 2018 Sep;24(9):1459-1468. doi: 10.1038/s41591-018-0135-2. Epub 2018 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验