The Poverty and Equity Global Practice, The World Bank, Washington, DC, US.
Department of Environmental and Occupational Health, Toho University, Tokyo, Japan.
Sci Rep. 2020 May 8;10(1):7764. doi: 10.1038/s41598-020-63712-2.
Seasonal influenza epidemics are associated with various meteorological factors. Recently absolute humidity (AH) has garnered attention, and some epidemiological studies show an association between AH and human influenza infection. However, they mainly analyzed weekly surveillance data, and daily data remains largely unexplored despite its potential benefits. In this study, we analyze daily influenza surveillance data using a distributed lag non-linear model to examine the association of AH with the number of influenza cases and the magnitude of the association. Additionally, we investigate how adjustment for seasonality and autocorrelation in the model affect results. All models used in the study showed a significant increase in the number of influenza cases as AH decreased, although the magnitude of the association differed substantially by model. Furthermore, we found that relative risk reached a peak at lag 10-14 with extremely low AH. To verify these findings, further analysis should be conducted using data from other locations.
季节性流感流行与各种气象因素有关。最近,绝对湿度(AH)引起了关注,一些流行病学研究表明 AH 与人类流感感染之间存在关联。然而,它们主要分析了每周监测数据,尽管每天的数据具有潜在的益处,但仍在很大程度上未被探索。在这项研究中,我们使用分布式滞后非线性模型分析了每日流感监测数据,以研究 AH 与流感病例数量的关联及其关联的大小。此外,我们还研究了模型中季节性和自相关性的调整如何影响结果。尽管模型不同,但研究中使用的所有模型都表明,随着 AH 的降低,流感病例数量显著增加。此外,我们发现相对风险在非常低的 AH 时在滞后 10-14 达到峰值。为了验证这些发现,应该使用来自其他地点的数据进一步分析。