Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
Adv Appl Microbiol. 2020;110:99-148. doi: 10.1016/bs.aambs.2019.12.001. Epub 2020 Jan 2.
Carbon monoxide (CO) is a gas that is toxic to various organisms including humans and even microbes; however, it has low redox potential, which can fuel certain microbes, namely, CO oxidizers. Hydrogenogenic CO oxidizers utilize an energy conservation system via a CO dehydrogenase/energy-converting hydrogenase complex to produce hydrogen gas, a zero emission fuel, by CO oxidation coupled with proton reduction. Biochemical and molecular biological studies using a few model organisms have revealed their enzymatic reactions and transcriptional response mechanisms using CO. Biotechnological studies for CO-dependent hydrogen production have also been carried out with these model organisms. In this chapter, we review recent advances in the studies of these microbes, which reveal their unique and versatile metabolic profiles and provides future perspectives on ecological roles and biotechnological applications. Over the past decade, the number of isolates has doubled (37 isolates in 5 phyla, 20 genera, and 32 species). Some of the recently isolated ones show broad specificity to electron acceptors. Moreover, accumulating genomic information predicts their unique physiologies and reveals their phylogenomic relationships with novel potential hydrogenogenic CO oxidizers. Combined with genomic database surveys, a molecular ecological study has unveiled the wide distribution and low abundance of these microbes. Finally, recent biotechnological applications of hydrogenogenic CO oxidizers have been achieved via diverse approaches (e.g., metabolic engineering and co-cultivation), and the identification of thermophilic facultative anaerobic CO oxidizers will promote industrial applications as oxygen-tolerant biocatalysts for efficient hydrogen production by genomic engineering.
一氧化碳(CO)是一种对包括人类在内的各种生物体都有毒性的气体,但它的氧化还原电位较低,可以为某些微生物提供燃料,即 CO 氧化菌。产氢 CO 氧化菌利用一种能量守恒系统,通过 CO 脱氢酶/能量转换氢化酶复合物,将 CO 氧化与质子还原偶联,产生氢气,这是一种零排放燃料。利用一些模式生物进行的生化和分子生物学研究揭示了它们利用 CO 的酶反应和转录响应机制。利用这些模式生物进行了 CO 依赖的产氢生物技术研究。在本章中,我们回顾了这些微生物研究的最新进展,这些研究揭示了它们独特而多样的代谢特征,并为它们的生态作用和生物技术应用提供了未来的展望。在过去的十年中,分离株的数量增加了一倍(5 个门中有 37 个分离株,涉及 20 个属和 32 个种)。一些最近分离的种对电子受体具有广泛的特异性。此外,积累的基因组信息预测了它们独特的生理特性,并揭示了它们与新型潜在产氢 CO 氧化菌的系统发育关系。结合基因组数据库调查,一项分子生态学研究揭示了这些微生物的广泛分布和低丰度。最后,通过多种方法(例如代谢工程和共培养)实现了产氢 CO 氧化菌的最新生物技术应用,并且鉴定出了嗜热兼性厌氧 CO 氧化菌,这将通过基因组工程促进作为耐氧生物催化剂的高效产氢工业应用。