Fantom Nicola, Dawson Robin A, Prondvai Edina, Constant Philippe, King Gary M, Schäfer Hendrik, Hernández Marcela
School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom.
School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
ISME J. 2025 Jan 2;19(1). doi: 10.1093/ismejo/wraf053.
Trace gas degradation is a widespread metabolic adaptation in microbial communities, driving chemosynthesis and providing auxiliary energy that enhances persistence during nutrient starvation. In particular, carbon monoxide and hydrogen degradation can be of crucial importance for pioneering microbial communities colonising new, oligotrophic environmental niches, such as fresh volcanic deposits or the aerial interface of the phyllosphere. After volcanic eruptions, trace gas metabolism helps pioneer colonisers to initiate soil formation in ash deposits and on recently solidified lava, a vital ecosystem service. Similarly, in the phyllosphere, bacteria colonising newly emerging leaves and shoots, and/or persisting on the oligotrophic surface of plants, also benefit from trace gas oxidation and, given the global size of this habitat, likely constitute a significant sink for these trace gases affecting atmospheric chemistry. Herein, we review the current state of knowledge surrounding microbial oxidation of carbon monoxide and hydrogen and discuss how this may contribute to niche colonisation in oligotrophic ecosystems.
痕量气体降解是微生物群落中广泛存在的一种代谢适应方式,它驱动着化学合成并提供辅助能量,从而增强微生物在营养饥饿期间的生存能力。特别是一氧化碳和氢气的降解对于开拓性微生物群落定殖于新的贫营养环境生态位至关重要,比如新鲜的火山沉积物或叶际的气生界面。火山喷发后,痕量气体代谢有助于开拓性定殖者在火山灰沉积物和最近凝固的熔岩上启动土壤形成,这是一项至关重要的生态系统服务。同样,在叶际中,定殖于新长出的叶片和嫩枝上,和/或在植物贫营养表面存活的细菌,也受益于痕量气体氧化,鉴于这个栖息地的全球规模,它们很可能构成了影响大气化学的这些痕量气体的一个重要汇。在此,我们综述了围绕一氧化碳和氢气微生物氧化的当前知识状态,并讨论了这如何可能有助于在贫营养生态系统中的生态位定殖。