Suppr超能文献

线性预测方法在帕金森病动物模型中分离场电位。

Linear Predictive Approaches Separate Field Potentials in Animal Model of Parkinson's Disease.

作者信息

Anjum Md Fahim, Haug Joshua, Alberico Stephanie L, Dasgupta Soura, Mudumbai Raghuraman, Kennedy Morgan A, Narayanan Nandakumar S

机构信息

Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA, United States.

DISTek Integration Inc., Cedar Falls, IA, United States.

出版信息

Front Neurosci. 2020 Apr 24;14:394. doi: 10.3389/fnins.2020.00394. eCollection 2020.

Abstract

Parkinson's disease (PD) causes impaired movement and cognition. PD can involve profound changes in cortical and subcortical brain activity as measured by electroencephalography or intracranial recordings of local field potentials (LFP). Such signals can adaptively guide deep-brain stimulation (DBS) as part of PD therapy. However, adaptive DBS requires the identification of triggers of neuronal activity dependent on real time monitoring and analysis. Current methods do not always identify PD-related signals and can entail delays. We test an alternative approach based on linear predictive coding (LPC), which fits autoregressive (AR) models to time-series data. Parameters of these AR models can be calculated by fast algorithms in real time. We compare LFPs from the striatum in an animal model of PD with dopamine depletion in the absence and presence of the dopamine precursor levodopa, which is used to treat motor symptoms of PD. We show that in dopamine-depleted mice a first order AR model characterized by a single LPC parameter obtained by LFP sampling at 1 kHz for just 1 min can distinguish between levodopa-treated and saline-treated mice and outperform current methods. This suggests that LPC may be useful in online analysis of neuronal signals to guide DBS in real time and could contribute to DBS-based treatment of PD.

摘要

帕金森病(PD)会导致运动和认知功能受损。通过脑电图或局部场电位(LFP)的颅内记录测量发现,PD可涉及皮质和皮质下脑活动的深刻变化。此类信号可作为PD治疗的一部分,自适应地指导深部脑刺激(DBS)。然而,自适应DBS需要识别依赖于实时监测和分析的神经元活动触发因素。当前方法并不总能识别出与PD相关的信号,而且可能会有延迟。我们测试了一种基于线性预测编码(LPC)的替代方法,该方法将自回归(AR)模型拟合到时间序列数据。这些AR模型的参数可以通过快速算法实时计算。我们比较了在帕金森病动物模型中,在不存在和存在多巴胺前体左旋多巴(用于治疗PD的运动症状)的情况下,纹状体的局部场电位。我们发现,在多巴胺耗竭的小鼠中,一个由通过以1kHz采样LFP仅1分钟获得的单个LPC参数表征的一阶AR模型,能够区分左旋多巴治疗组和生理盐水治疗组小鼠,并且优于当前方法。这表明LPC可能有助于在线分析神经元信号以实时指导DBS,并可能有助于基于DBS的帕金森病治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8897/7193738/ddfc105f6b1f/fnins-14-00394-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验