Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University Health Science Center, Houston, TX, USA.
SLAS Discov. 2020 Aug;25(7):695-708. doi: 10.1177/2472555220922917. Epub 2020 May 11.
Human health is at risk from environmental exposures to a wide range of chemical toxicants and endocrine-disrupting chemicals (EDCs). As part of understanding this risk, the U.S. Environmental Protection Agency (EPA) has been pursuing new high-throughput in vitro assays and computational models to characterize EDCs. EPA models have incorporated our high-content analysis-based green fluorescent protein estrogen receptor (GFP-ER): PRL-HeLa assay, which allows direct visualization of ER binding to DNA regulatory elements. Here, we characterize a modified functional assay based on the stable expression of a chimeric androgen receptor (ARER), wherein a region containing the native AR DNA-binding domain (DBD) was replaced with the ERα DBD (amino acids 183-254). We demonstrate that the AR agonist dihydrotestosterone induces GFP-ARER nuclear translocation, PRL promoter binding, and transcriptional activity at physiologically relevant concentrations (<1 nM). In contrast, the AR antagonist bicalutamide induces only nuclear translocation of the GFP-ARER receptor (at μM concentrations). Estradiol also fails to induce visible chromatin binding, indicating androgen specificity. In a screen of reference chemicals from the EPA and the Agency for Toxic Substances and Disease Registry, the GFP-ARER cell model identified and mechanistically grouped activity by known (anti-)androgens based on the ability to induce nuclear translocation and/or chromatin binding. Finally, the cell model was used to identify potential (anti-)androgens in environmental samples in collaboration with the Houston Ship Channel/Galveston Bay Texas A&M University EPA Superfund Research Program. Based on these data, the chromatin-binding, in vitro assay-based GFP-ARER model represents a selective tool for rapidly identifying androgenic activity associated with drugs, chemicals, and environmental samples.
人类健康受到环境中广泛存在的化学毒物和内分泌干扰化学物质(EDCs)的威胁。为了了解这种风险,美国环境保护署(EPA)一直在寻求新的高通量体外检测方法和计算模型来表征 EDC。EPA 模型纳入了我们基于高通量分析的绿色荧光蛋白雌激素受体(GFP-ER):PRL-HeLa 检测法,该方法可直接观察 ER 与 DNA 调控元件的结合。在此,我们描述了一种基于稳定表达嵌合雄激素受体(ARER)的改良功能检测法,其中包含天然 AR DNA 结合域(DBD)的区域被 ERα DBD(氨基酸 183-254)取代。我们证明,雄激素激动剂二氢睾酮在生理相关浓度(<1 nM)下诱导 GFP-ARER 核转位、PRL 启动子结合和转录活性。相比之下,雄激素拮抗剂比卡鲁胺仅诱导 GFP-ARER 受体的核转位(在 μM 浓度下)。雌二醇也未能诱导可见的染色质结合,表明雄激素的特异性。在 EPA 和毒物和疾病登记署的参考化学物质筛选中,GFP-ARER 细胞模型根据诱导核转位和/或染色质结合的能力,识别和以机制为基础对已知(抗)雄激素的活性进行分组。最后,该细胞模型与休斯顿船运航道/加尔维斯顿湾德克萨斯 A&M 大学 EPA 超级基金研究计划合作,用于鉴定环境样本中的潜在(抗)雄激素。基于这些数据,基于染色质结合的体外 GFP-ARER 模型代表了一种快速识别与药物、化学物质和环境样本相关的雄激素活性的选择性工具。