Suppr超能文献

一种使用嵌合雄激素受体的机制高通量分析测定法,可快速表征雄激素类化学物质。

A Mechanistic High-Content Analysis Assay Using a Chimeric Androgen Receptor That Rapidly Characterizes Androgenic Chemicals.

机构信息

Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.

Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University Health Science Center, Houston, TX, USA.

出版信息

SLAS Discov. 2020 Aug;25(7):695-708. doi: 10.1177/2472555220922917. Epub 2020 May 11.

Abstract

Human health is at risk from environmental exposures to a wide range of chemical toxicants and endocrine-disrupting chemicals (EDCs). As part of understanding this risk, the U.S. Environmental Protection Agency (EPA) has been pursuing new high-throughput in vitro assays and computational models to characterize EDCs. EPA models have incorporated our high-content analysis-based green fluorescent protein estrogen receptor (GFP-ER): PRL-HeLa assay, which allows direct visualization of ER binding to DNA regulatory elements. Here, we characterize a modified functional assay based on the stable expression of a chimeric androgen receptor (ARER), wherein a region containing the native AR DNA-binding domain (DBD) was replaced with the ERα DBD (amino acids 183-254). We demonstrate that the AR agonist dihydrotestosterone induces GFP-ARER nuclear translocation, PRL promoter binding, and transcriptional activity at physiologically relevant concentrations (<1 nM). In contrast, the AR antagonist bicalutamide induces only nuclear translocation of the GFP-ARER receptor (at μM concentrations). Estradiol also fails to induce visible chromatin binding, indicating androgen specificity. In a screen of reference chemicals from the EPA and the Agency for Toxic Substances and Disease Registry, the GFP-ARER cell model identified and mechanistically grouped activity by known (anti-)androgens based on the ability to induce nuclear translocation and/or chromatin binding. Finally, the cell model was used to identify potential (anti-)androgens in environmental samples in collaboration with the Houston Ship Channel/Galveston Bay Texas A&M University EPA Superfund Research Program. Based on these data, the chromatin-binding, in vitro assay-based GFP-ARER model represents a selective tool for rapidly identifying androgenic activity associated with drugs, chemicals, and environmental samples.

摘要

人类健康受到环境中广泛存在的化学毒物和内分泌干扰化学物质(EDCs)的威胁。为了了解这种风险,美国环境保护署(EPA)一直在寻求新的高通量体外检测方法和计算模型来表征 EDC。EPA 模型纳入了我们基于高通量分析的绿色荧光蛋白雌激素受体(GFP-ER):PRL-HeLa 检测法,该方法可直接观察 ER 与 DNA 调控元件的结合。在此,我们描述了一种基于稳定表达嵌合雄激素受体(ARER)的改良功能检测法,其中包含天然 AR DNA 结合域(DBD)的区域被 ERα DBD(氨基酸 183-254)取代。我们证明,雄激素激动剂二氢睾酮在生理相关浓度(<1 nM)下诱导 GFP-ARER 核转位、PRL 启动子结合和转录活性。相比之下,雄激素拮抗剂比卡鲁胺仅诱导 GFP-ARER 受体的核转位(在 μM 浓度下)。雌二醇也未能诱导可见的染色质结合,表明雄激素的特异性。在 EPA 和毒物和疾病登记署的参考化学物质筛选中,GFP-ARER 细胞模型根据诱导核转位和/或染色质结合的能力,识别和以机制为基础对已知(抗)雄激素的活性进行分组。最后,该细胞模型与休斯顿船运航道/加尔维斯顿湾德克萨斯 A&M 大学 EPA 超级基金研究计划合作,用于鉴定环境样本中的潜在(抗)雄激素。基于这些数据,基于染色质结合的体外 GFP-ARER 模型代表了一种快速识别与药物、化学物质和环境样本相关的雄激素活性的选择性工具。

相似文献

1
A Mechanistic High-Content Analysis Assay Using a Chimeric Androgen Receptor That Rapidly Characterizes Androgenic Chemicals.
SLAS Discov. 2020 Aug;25(7):695-708. doi: 10.1177/2472555220922917. Epub 2020 May 11.
3
Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches.
Toxicol Appl Pharmacol. 2013 Oct 1;272(1):67-76. doi: 10.1016/j.taap.2013.04.032. Epub 2013 May 23.
4
Sensitive image-based chromatin binding assays using inducible ERα to rapidly characterize estrogenic chemicals and mixtures.
iScience. 2022 Sep 23;25(10):105200. doi: 10.1016/j.isci.2022.105200. eCollection 2022 Oct 21.
5
CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity.
Environ Health Perspect. 2020 Feb;128(2):27002. doi: 10.1289/EHP5580. Epub 2020 Feb 7.
6
A novel ERβ high throughput microscopy platform for testing endocrine disrupting chemicals.
Heliyon. 2023 Dec 8;10(1):e23119. doi: 10.1016/j.heliyon.2023.e23119. eCollection 2024 Jan 15.
7
Development, validation and integration of in silico models to identify androgen active chemicals.
Chemosphere. 2019 Apr;220:204-215. doi: 10.1016/j.chemosphere.2018.12.131. Epub 2018 Dec 19.
9
Development and Validation of a Computational Model for Androgen Receptor Activity.
Chem Res Toxicol. 2017 Apr 17;30(4):946-964. doi: 10.1021/acs.chemrestox.6b00347. Epub 2016 Dec 9.
10
Classifying chemical mode of action using gene networks and machine learning: a case study with the herbicide linuron.
Comp Biochem Physiol Part D Genomics Proteomics. 2013 Dec;8(4):263-74. doi: 10.1016/j.cbd.2013.08.001. Epub 2013 Aug 9.

引用本文的文献

1
Characterization of flavonoids with potent and subtype-selective actions on estrogen receptors alpha and beta.
iScience. 2024 Feb 20;27(3):109275. doi: 10.1016/j.isci.2024.109275. eCollection 2024 Mar 15.
2
A novel ERβ high throughput microscopy platform for testing endocrine disrupting chemicals.
Heliyon. 2023 Dec 8;10(1):e23119. doi: 10.1016/j.heliyon.2023.e23119. eCollection 2024 Jan 15.
3
Sensitive image-based chromatin binding assays using inducible ERα to rapidly characterize estrogenic chemicals and mixtures.
iScience. 2022 Sep 23;25(10):105200. doi: 10.1016/j.isci.2022.105200. eCollection 2022 Oct 21.

本文引用的文献

3
The US Federal Tox21 Program: A strategic and operational plan for continued leadership.
ALTEX. 2018;35(2):163-168. doi: 10.14573/altex.1803011. Epub 2018 Mar 8.
4
Characterizing properties of non-estrogenic substituted bisphenol analogs using high throughput microscopy and image analysis.
PLoS One. 2017 Jul 13;12(7):e0180141. doi: 10.1371/journal.pone.0180141. eCollection 2017.
6
Development and Validation of a Computational Model for Androgen Receptor Activity.
Chem Res Toxicol. 2017 Apr 17;30(4):946-964. doi: 10.1021/acs.chemrestox.6b00347. Epub 2016 Dec 9.
8
Moving Beyond the Androgen Receptor (AR): Targeting AR-Interacting Proteins to Treat Prostate Cancer.
Horm Cancer. 2016 Apr;7(2):84-103. doi: 10.1007/s12672-015-0239-9. Epub 2016 Jan 4.
9
Differential Regulation of Progesterone Receptor-Mediated Transcription by CDK2 and DNA-PK.
Mol Endocrinol. 2016 Feb;30(2):158-72. doi: 10.1210/me.2015-1144. Epub 2015 Dec 11.
10
Executive Summary to EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals.
Endocr Rev. 2015 Dec;36(6):593-602. doi: 10.1210/er.2015-1093. Epub 2015 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验