Suppr超能文献

相似文献

1
Development, validation and integration of in silico models to identify androgen active chemicals.
Chemosphere. 2019 Apr;220:204-215. doi: 10.1016/j.chemosphere.2018.12.131. Epub 2018 Dec 19.
2
CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity.
Environ Health Perspect. 2020 Feb;128(2):27002. doi: 10.1289/EHP5580. Epub 2020 Feb 7.
3
Using in vitro high throughput screening assays to identify potential endocrine-disrupting chemicals.
Environ Health Perspect. 2013 Jan;121(1):7-14. doi: 10.1289/ehp.1205065. Epub 2012 Sep 28.
5
Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches.
Toxicol Appl Pharmacol. 2013 Oct 1;272(1):67-76. doi: 10.1016/j.taap.2013.04.032. Epub 2013 May 23.
6
Weight of evidence for cross-species conservation of androgen receptor-based biological activity.
Toxicol Sci. 2023 May 31;193(2):131-145. doi: 10.1093/toxsci/kfad038.
7
Computational models to predict endocrine-disrupting chemical binding with androgen or oestrogen receptors.
Ecotoxicol Environ Saf. 2014 Dec;110:280-7. doi: 10.1016/j.ecoenv.2014.08.026. Epub 2014 Oct 3.
9
Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model.
Environ Sci Technol. 2015 Jul 21;49(14):8804-14. doi: 10.1021/acs.est.5b02641. Epub 2015 Jun 26.
10
Machine Learning Consensus To Predict the Binding to the Androgen Receptor within the CoMPARA Project.
J Chem Inf Model. 2019 May 28;59(5):1839-1848. doi: 10.1021/acs.jcim.8b00794. Epub 2019 Feb 11.

引用本文的文献

1
Prediction model for milk transfer of drugs by primarily evaluating the area under the curve using QSAR/QSPR.
Pharm Res. 2023 Mar;40(3):711-719. doi: 10.1007/s11095-023-03477-1. Epub 2023 Jan 31.
2
Novel machine learning models to predict endocrine disruption activity for high-throughput chemical screening.
Front Toxicol. 2022 Sep 20;4:981928. doi: 10.3389/ftox.2022.981928. eCollection 2022.
3
Review of studies dedicated to the nuclear receptor family: Therapeutic prospects and toxicological concerns.
Front Endocrinol (Lausanne). 2022 Sep 13;13:986016. doi: 10.3389/fendo.2022.986016. eCollection 2022.
4
In Silico Models for Skin Sensitization and Irritation.
Methods Mol Biol. 2022;2425:291-354. doi: 10.1007/978-1-0716-1960-5_13.
7
QSAR Models for Human Carcinogenicity: An Assessment Based on Oral and Inhalation Slope Factors.
Molecules. 2020 Dec 29;26(1):127. doi: 10.3390/molecules26010127.
8
Comparison of Machine Learning Models for the Androgen Receptor.
Environ Sci Technol. 2020 Nov 3;54(21):13690-13700. doi: 10.1021/acs.est.0c03984. Epub 2020 Oct 21.
9
CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity.
Environ Health Perspect. 2020 Feb;128(2):27002. doi: 10.1289/EHP5580. Epub 2020 Feb 7.
10
Consensus versus Individual QSARs in Classification: Comparison on a Large-Scale Case Study.
J Chem Inf Model. 2020 Mar 23;60(3):1215-1223. doi: 10.1021/acs.jcim.9b01057. Epub 2020 Mar 2.

本文引用的文献

1
Integrated strategy for mutagenicity prediction applied to food contact chemicals.
ALTEX. 2018;35(2):169-178. doi: 10.14573/altex.1707171. Epub 2017 Sep 18.
3
Development and Validation of a Computational Model for Androgen Receptor Activity.
Chem Res Toxicol. 2017 Apr 17;30(4):946-964. doi: 10.1021/acs.chemrestox.6b00347. Epub 2016 Dec 9.
5
ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology.
Chem Res Toxicol. 2016 Aug 15;29(8):1225-51. doi: 10.1021/acs.chemrestox.6b00135. Epub 2016 Jul 20.
6
CERAPP: Collaborative Estrogen Receptor Activity Prediction Project.
Environ Health Perspect. 2016 Jul;124(7):1023-33. doi: 10.1289/ehp.1510267. Epub 2016 Feb 23.
7
Docking-based classification models for exploratory toxicology studies on high-quality estrogenic experimental data.
Future Med Chem. 2015;7(14):1921-36. doi: 10.4155/fmc.15.103. Epub 2015 Oct 6.
10
Automatic knowledge extraction from chemical structures: the case of mutagenicity prediction.
SAR QSAR Environ Res. 2013;24(5):365-83. doi: 10.1080/1062936X.2013.773376. Epub 2013 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验