Suppr超能文献

高通量显微镜检测细胞模型中 AR 水平的单细胞分布分析:用于测试内分泌干扰化学物质的应用。

Single-Cell Distribution Analysis of AR Levels by High-Throughput Microscopy in Cell Models: Application for Testing Endocrine-Disrupting Chemicals.

机构信息

Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.

Integrated Microscopy Core, Baylor College of Medicine, Houston, TX, USA.

出版信息

SLAS Discov. 2020 Aug;25(7):684-694. doi: 10.1177/2472555220934420. Epub 2020 Jun 18.

Abstract

Cell-to-cell variation of protein expression in genetically homogeneous populations is a common biological trait often neglected during analysis of high-throughput (HT) screens and is rarely used as a metric to characterize chemicals. We have captured single-cell distributions of androgen receptor (AR) nuclear levels after perturbations as a means to evaluate assay reproducibility and characterize a small subset of chemicals. AR, a member of the nuclear receptor family of transcription factors, is the central regulator of male reproduction and is involved in many pathophysiological processes. AR protein levels and nuclear localization often increase following ligand binding, with dihydrotestosterone (DHT) being the natural agonist. HT AR immunofluorescence imaging was used in multiple cell lines to define single-cell nuclear values extracted from thousands of cells per condition treated with DHT or DMSO (control). Analysis of numerous biological replicates led to a quality control metric that takes into account the distribution of single-cell data, and how it changes upon treatments. Dose-response experiments across several cell lines showed a large range of sensitivity to DHT, prompting us to treat selected cell lines with 45 Environmental Protection Agency (EPA)-provided chemicals that include many endocrine-disrupting chemicals (EDCs); data from six of the compounds were then integrated with orthogonal assays. Our comprehensive results indicate that quantitative single-cell distribution analysis of AR protein levels is a valid method to detect the potential androgenic and antiandrogenic actions of environmentally relevant chemicals in a sensitive and reproducible manner.

摘要

在高通量(HT)筛选分析中,常忽略遗传同质群体中蛋白表达的细胞间变化,且很少将其作为一种特征来描述化学物质。我们通过捕捉雄激素受体(AR)核水平的单细胞分布,作为评估测定重现性和描述一小部分化学物质的手段。AR 是核受体转录因子家族的成员,是男性生殖的核心调节剂,参与许多病理生理过程。AR 蛋白水平和核定位在配体结合后通常会增加,二氢睾酮(DHT)是天然激动剂。HT AR 免疫荧光成像用于多种细胞系,以定义从每个条件下处理的数千个细胞中提取的单细胞核值,这些条件用 DHT 或 DMSO(对照)处理。对大量生物学重复的分析导致了一个质量控制指标,该指标考虑了单细胞数据的分布以及处理后数据的变化。在几个细胞系中的剂量反应实验显示出对 DHT 的敏感性范围很大,促使我们用 45 种由美国环保署(EPA)提供的化学物质处理选定的细胞系,其中包括许多内分泌干扰化学物质(EDC);然后将其中六种化合物的数据与正交测定法集成。我们的综合结果表明,定量单细胞分布分析 AR 蛋白水平是一种敏感且可重现的方法,可检测环境相关化学物质的潜在雄激素和抗雄激素作用。

相似文献

5
Molecular mechanism of Bisphenol A on androgen receptor antagonism.双酚 A 对雄激素受体拮抗作用的分子机制。
Toxicol In Vitro. 2019 Dec;61:104621. doi: 10.1016/j.tiv.2019.104621. Epub 2019 Aug 12.
6
CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity.CoMPARA:雄激素受体活性协作建模项目。
Environ Health Perspect. 2020 Feb;128(2):27002. doi: 10.1289/EHP5580. Epub 2020 Feb 7.
8
Development and Validation of a Computational Model for Androgen Receptor Activity.雄激素受体活性计算模型的开发与验证
Chem Res Toxicol. 2017 Apr 17;30(4):946-964. doi: 10.1021/acs.chemrestox.6b00347. Epub 2016 Dec 9.

本文引用的文献

6
Biologically Relevant Heterogeneity: Metrics and Practical Insights.生物学相关异质性:度量与实践洞察。
SLAS Discov. 2017 Mar;22(3):213-237. doi: 10.1177/2472555216682725. Epub 2017 Jan 6.
7
Development and Validation of a Computational Model for Androgen Receptor Activity.雄激素受体活性计算模型的开发与验证
Chem Res Toxicol. 2017 Apr 17;30(4):946-964. doi: 10.1021/acs.chemrestox.6b00347. Epub 2016 Dec 9.
8
ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology.ToxCast化学图谱:为21世纪毒理学铺平道路。
Chem Res Toxicol. 2016 Aug 15;29(8):1225-51. doi: 10.1021/acs.chemrestox.6b00135. Epub 2016 Jul 20.
10
CERAPP: Collaborative Estrogen Receptor Activity Prediction Project.CERAPP:协作雌激素受体活性预测项目。
Environ Health Perspect. 2016 Jul;124(7):1023-33. doi: 10.1289/ehp.1510267. Epub 2016 Feb 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验