Suppr超能文献

矩阵分解和迁移学习揭示了多个单细胞ATAC测序数据集之间的调控生物学。

Matrix factorization and transfer learning uncover regulatory biology across multiple single-cell ATAC-seq data sets.

作者信息

Erbe Rossin, Kessler Michael D, Favorov Alexander V, Easwaran Hariharan, Gaykalova Daria A, Fertig Elana J

机构信息

Johns Hopkins University, Baltimore, MD, USA.

Vavilov Institute of General Genetics, Moscow, Russia.

出版信息

Nucleic Acids Res. 2020 Jul 9;48(12):e68. doi: 10.1093/nar/gkaa349.

Abstract

While the methods available for single-cell ATAC-seq analysis are well optimized for clustering cell types, the question of how to integrate multiple scATAC-seq data sets and/or sequencing modalities is still open. We present an analysis framework that enables such integration across scATAC-seq data sets by applying the CoGAPS Matrix Factorization algorithm and the projectR transfer learning program to identify common regulatory patterns across scATAC-seq data sets. We additionally integrate our analysis with scRNA-seq data to identify orthogonal evidence for transcriptional regulators predicted by scATAC-seq analysis. Using publicly available scATAC-seq data, we find patterns that accurately characterize cell types both within and across data sets. Furthermore, we demonstrate that these patterns are both consistent with current biological understanding and reflective of novel regulatory biology.

摘要

虽然现有的单细胞ATAC测序分析方法在细胞类型聚类方面已得到很好的优化,但如何整合多个单细胞ATAC测序数据集和/或测序模式的问题仍然悬而未决。我们提出了一个分析框架,通过应用CoGAPS矩阵分解算法和projectR迁移学习程序,能够跨单细胞ATAC测序数据集进行这种整合,以识别跨单细胞ATAC测序数据集的共同调控模式。我们还将分析与单细胞RNA测序数据整合,以识别单细胞ATAC测序分析预测的转录调节因子的正交证据。利用公开可用的单细胞ATAC测序数据,我们发现了能准确表征数据集内和跨数据集细胞类型的模式。此外,我们证明这些模式既与当前的生物学理解一致,又反映了新的调控生物学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/847a/7337516/b893a4a8e07a/gkaa349fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验