Suppr超能文献

预测细胞状态:通过单细胞多组学从描述性生物学走向预测性生物学。

Forecasting cellular states: from descriptive to predictive biology via single-cell multiomics.

作者信息

Stein-O'Brien Genevieve L, Ainsile Michaela C, Fertig Elana J

机构信息

Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD.

Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD.

出版信息

Curr Opin Syst Biol. 2021 Jun;26:24-32. doi: 10.1016/j.coisb.2021.03.008. Epub 2021 Apr 3.

Abstract

As the single cell field races to characterize each cell type, state, and behavior, the complexity of the computational analysis approaches the complexity of the biological systems. Single cell and imaging technologies now enable unprecedented measurements of state transitions in biological systems, providing high-throughput data that capture tens-of-thousands of measurements on hundreds-of-thousands of samples. Thus, the definition of cell type and state is evolving to encompass the broad range of biological questions now attainable. To answer these questions requires the development of computational tools for integrated multi-omics analysis. Merged with mathematical models, these algorithms will be able to forecast future states of biological systems, going from statistical inferences of phenotypes to time course predictions of the biological systems with dynamic maps analogous to weather systems. Thus, systems biology for forecasting biological system dynamics from multi-omic data represents the future of cell biology empowering a new generation of technology-driven predictive medicine.

摘要

随着单细胞领域竞相描述每种细胞类型、状态和行为,计算分析的复杂性已接近生物系统的复杂性。单细胞和成像技术如今能够以前所未有的方式测量生物系统中的状态转变,提供高通量数据,这些数据能对数以十万计的样本进行数以万计的测量。因此,细胞类型和状态的定义正在不断演变,以涵盖目前能够实现的广泛生物学问题。要回答这些问题,需要开发用于综合多组学分析的计算工具。与数学模型相结合,这些算法将能够预测生物系统的未来状态,从表型的统计推断发展到利用类似于气象系统的动态图谱对生物系统进行时程预测。因此,基于多组学数据预测生物系统动态的系统生物学代表了细胞生物学的未来,为新一代技术驱动的精准医学提供支持。

相似文献

3
An overview of technologies for MS-based proteomics-centric multi-omics.基于 MS 的蛋白质组学中心型多组学技术概述。
Expert Rev Proteomics. 2022 Mar;19(3):165-181. doi: 10.1080/14789450.2022.2070476. Epub 2022 May 2.
5
Introduction: Cancer Gene Networks.引言:癌症基因网络
Methods Mol Biol. 2017;1513:1-9. doi: 10.1007/978-1-4939-6539-7_1.
6
The technological landscape and applications of single-cell multi-omics.单细胞多组学的技术领域和应用。
Nat Rev Mol Cell Biol. 2023 Oct;24(10):695-713. doi: 10.1038/s41580-023-00615-w. Epub 2023 Jun 6.
8

引用本文的文献

3
Recent Developments in Single-Cell Metabolomics by Mass Spectrometry─A Perspective.基于质谱的单细胞代谢组学研究进展——综述
J Proteome Res. 2025 Apr 4;24(4):1493-1518. doi: 10.1021/acs.jproteome.4c00646. Epub 2024 Oct 22.
6
Transcriptomic forecasting with neural ordinary differential equations.使用神经常微分方程进行转录组预测。
Patterns (N Y). 2023 Jul 6;4(8):100793. doi: 10.1016/j.patter.2023.100793. eCollection 2023 Aug 11.

本文引用的文献

2
CellRank for directed single-cell fate mapping.细胞排序用于有向单细胞命运图谱绘制。
Nat Methods. 2022 Feb;19(2):159-170. doi: 10.1038/s41592-021-01346-6. Epub 2022 Jan 13.
3
Model comparison via simplicial complexes and persistent homology.通过单纯复形和持久同调进行模型比较。
R Soc Open Sci. 2021 Oct 13;8(10):211361. doi: 10.1098/rsos.211361. eCollection 2021 Oct.
6
Integrated analysis of multimodal single-cell data.多模态单细胞数据的综合分析。
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验