Suppr超能文献

基于F-FDG PET/CT的深度学习模型及临床代谢列线图预测肺腺癌高级别模式

F-FDG PET/CT-based deep learning models and a clinical-metabolic nomogram for predicting high-grade patterns in lung adenocarcinoma.

作者信息

Guo Yue, Jia Xibin, Yang Chuanxu, Fan Chao, Zhu Hui, Chen Xu, Liu Fugeng

机构信息

Department of Nuclear Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China.

Faculty of Information Technology, Beijing University of Technology, Beijing, China.

出版信息

BMC Med Imaging. 2025 Apr 28;25(1):138. doi: 10.1186/s12880-025-01684-3.

Abstract

BACKGROUND

To develop and validate deep learning (DL) and traditional clinical-metabolic (CM) models based on 18 F-FDG PET/CT images for noninvasively predicting high-grade patterns (HGPs) of invasive lung adenocarcinoma (LUAD).

METHODS

A total of 303 patients with invasive LUAD were enrolled in this retrospective study; these patients were randomly divided into training, validation and test sets at a ratio of 7:1:2. DL models were trained and optimized on PET, CT and PET/CT fusion images, respectively. CM model was built from clinical and PET/CT metabolic parameters via backwards stepwise logistic regression and visualized via a nomogram. The prediction performance of the models was evaluated mainly by the area under the curve (AUC). We also compared the AUCs of different models for the test set.

RESULTS

CM model was established upon clinical stage (OR: 7.30; 95% CI: 2.46-26.37), cytokeratin 19 fragment 21 - 1 (CYFRA 21-1, OR: 1.18; 95% CI: 0.96-1.57), mean standardized uptake value (SUVmean, OR: 1.31; 95% CI: 1.17-1.49), total lesion glycolysis (TLG, OR: 0.994; 95% CI: 0.990-1.000) and size (OR: 1.37; 95% CI: 0.95-2.02). Both the DL and CM models exhibited good prediction efficacy in the three cohorts, with AUCs ranging from 0.817 to 0.977. For the test set, the highest AUC was yielded by the CT-DL model (0.895), followed by the PET/CT-DL model (0.882), CM model (0.879) and PET-DL model (0.817), but no significant difference was revealed between any two models.

CONCLUSIONS

Deep learning and clinical-metabolic models based on the F-FDG PET/CT model could effectively identify LUAD patients with HGP. These models could aid in treatment planning and precision medicine.

CLINICAL TRIAL NUMBER

Not applicable.

摘要

背景

基于18F-FDG PET/CT图像开发并验证深度学习(DL)和传统临床代谢(CM)模型,用于无创预测浸润性肺腺癌(LUAD)的高级别模式(HGP)。

方法

本回顾性研究共纳入303例浸润性LUAD患者;这些患者以7:1:2的比例随机分为训练集、验证集和测试集。分别在PET、CT和PET/CT融合图像上训练和优化DL模型。通过向后逐步逻辑回归从临床和PET/CT代谢参数构建CM模型,并通过列线图进行可视化。主要通过曲线下面积(AUC)评估模型的预测性能。我们还比较了测试集不同模型的AUC。

结果

CM模型基于临床分期(OR:7.30;95%CI:2.46-26.37)、细胞角蛋白19片段21-1(CYFRA 21-1,OR:1.18;95%CI:0.96-1.57)、平均标准化摄取值(SUVmean,OR:1.31;95%CI:1.17-1.49)、总病变糖酵解(TLG,OR:0.994;95%CI:0.990-1.000)和大小(OR:1.37;95%CI:0.95-2.02)建立。DL模型和CM模型在三个队列中均表现出良好的预测效果,AUC范围为0.817至0.977。对于测试集,CT-DL模型的AUC最高(0.895),其次是PET/CT-DL模型(0.882)、CM模型(0.879)和PET-DL模型(0.817),但任意两个模型之间均未显示出显著差异。

结论

基于F-FDG PET/CT模型的深度学习和临床代谢模型可有效识别具有HGP的LUAD患者。这些模型有助于治疗规划和精准医学。

临床试验编号

不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a580/12036234/561f3d148024/12880_2025_1684_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验