Suppr超能文献

基于半监督深度非局部残差神经网络的儿科MRI实时质量评估

Real-Time Quality Assessment of Pediatric MRI via Semi-Supervised Deep Nonlocal Residual Neural Networks.

作者信息

Liu Siyuan, Thung Kim-Han, Lin Weili, Yap Pew-Thian, Shen Dinggang

出版信息

IEEE Trans Image Process. 2020 May 8. doi: 10.1109/TIP.2020.2992079.

Abstract

In this paper, we introduce an image quality assessment (IQA) method for pediatric T1- and T2-weighted MR images. IQA is first performed slice-wise using a nonlocal residual neural network (NR-Net) and then volume-wise by agglomerating the slice QA results using random forest. Our method requires only a small amount of quality-annotated images for training and is designed to be robust to annotation noise that might occur due to rater errors and the inevitable mix of good and bad slices in an image volume. Using a small set of quality-assessed images, we pre-train NR-Net to annotate each image slice with an initial quality rating (i.e., pass, questionable, fail), which we then refine by semi-supervised learning and iterative self-training. Experimental results demonstrate that our method, trained using only samples of modest size, exhibit great generalizability, capable of real-time (milliseconds per volume) large-scale IQA with nearperfect accuracy.

摘要

在本文中,我们介绍了一种针对儿科T1加权和T2加权磁共振图像的图像质量评估(IQA)方法。IQA首先使用非局部残差神经网络(NR-Net)逐切片进行,然后通过随机森林聚合切片质量评估结果进行逐体积评估。我们的方法仅需要少量经过质量标注的图像进行训练,并且设计得对由于评分者误差以及图像体积中不可避免的好坏切片混合而可能出现的标注噪声具有鲁棒性。使用一小部分经过质量评估的图像,我们对NR-Net进行预训练,以用初始质量评级(即通过、有疑问、不通过)标注每个图像切片,然后通过半监督学习和迭代自训练对其进行优化。实验结果表明,我们的方法仅使用适度规模的样本进行训练,却具有很强的通用性,能够以近乎完美的准确率进行实时(每体积毫秒级)大规模IQA。

相似文献

4
Semi-Supervised Learning for Fetal Brain MRI Quality Assessment with ROI consistency.基于感兴趣区域一致性的胎儿脑磁共振成像质量评估的半监督学习
Med Image Comput Comput Assist Interv. 2020 Oct;12266:386-395. doi: 10.1007/978-3-030-59725-2_37. Epub 2020 Sep 29.

本文引用的文献

1
Two-Stream Convolutional Networks for Blind Image Quality Assessment.双流卷积网络的盲图像质量评估。
IEEE Trans Image Process. 2019 May;28(5):2200-2211. doi: 10.1109/TIP.2018.2883741. Epub 2018 Nov 28.
3
Deep CNN-Based Blind Image Quality Predictor.基于深度卷积神经网络的盲图像质量预测器。
IEEE Trans Neural Netw Learn Syst. 2019 Jan;30(1):11-24. doi: 10.1109/TNNLS.2018.2829819. Epub 2018 Jun 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验