Liu Siyuan, Thung Kim-Han, Lin Weili, Yap Pew-Thian, Shen Dinggang
IEEE Trans Image Process. 2020 May 8. doi: 10.1109/TIP.2020.2992079.
In this paper, we introduce an image quality assessment (IQA) method for pediatric T1- and T2-weighted MR images. IQA is first performed slice-wise using a nonlocal residual neural network (NR-Net) and then volume-wise by agglomerating the slice QA results using random forest. Our method requires only a small amount of quality-annotated images for training and is designed to be robust to annotation noise that might occur due to rater errors and the inevitable mix of good and bad slices in an image volume. Using a small set of quality-assessed images, we pre-train NR-Net to annotate each image slice with an initial quality rating (i.e., pass, questionable, fail), which we then refine by semi-supervised learning and iterative self-training. Experimental results demonstrate that our method, trained using only samples of modest size, exhibit great generalizability, capable of real-time (milliseconds per volume) large-scale IQA with nearperfect accuracy.
在本文中,我们介绍了一种针对儿科T1加权和T2加权磁共振图像的图像质量评估(IQA)方法。IQA首先使用非局部残差神经网络(NR-Net)逐切片进行,然后通过随机森林聚合切片质量评估结果进行逐体积评估。我们的方法仅需要少量经过质量标注的图像进行训练,并且设计得对由于评分者误差以及图像体积中不可避免的好坏切片混合而可能出现的标注噪声具有鲁棒性。使用一小部分经过质量评估的图像,我们对NR-Net进行预训练,以用初始质量评级(即通过、有疑问、不通过)标注每个图像切片,然后通过半监督学习和迭代自训练对其进行优化。实验结果表明,我们的方法仅使用适度规模的样本进行训练,却具有很强的通用性,能够以近乎完美的准确率进行实时(每体积毫秒级)大规模IQA。