Suppr超能文献

相似文献

2
Hierarchical Nonlocal Residual Networks for Image Quality Assessment of Pediatric Diffusion MRI With Limited and Noisy Annotations.
IEEE Trans Med Imaging. 2020 Nov;39(11):3691-3702. doi: 10.1109/TMI.2020.3002708. Epub 2020 Oct 28.
3
Multi-stage Image Quality Assessment of Diffusion MRI via Semi-supervised Nonlocal Residual Networks.
Med Image Comput Comput Assist Interv. 2019;11766:521-528. doi: 10.1007/978-3-030-32248-9_58. Epub 2019 Oct 10.
4
Semi-Supervised Learning for Fetal Brain MRI Quality Assessment with ROI consistency.
Med Image Comput Comput Assist Interv. 2020 Oct;12266:386-395. doi: 10.1007/978-3-030-59725-2_37. Epub 2020 Sep 29.
5
Semi-Supervised Multi-Organ Segmentation through Quality Assurance Supervision.
Proc SPIE Int Soc Opt Eng. 2020;11313. doi: 10.1117/12.2549033. Epub 2020 Mar 10.
6
Collaborative Learning for Annotation-Efficient Volumetric MR Image Segmentation.
J Magn Reson Imaging. 2024 Oct;60(4):1604-1614. doi: 10.1002/jmri.29194. Epub 2023 Dec 29.
8
Towards annotation-efficient segmentation via image-to-image translation.
Med Image Anal. 2022 Nov;82:102624. doi: 10.1016/j.media.2022.102624. Epub 2022 Sep 21.
9
Semi-supervised mp-MRI data synthesis with StitchLayer and auxiliary distance maximization.
Med Image Anal. 2020 Jan;59:101565. doi: 10.1016/j.media.2019.101565. Epub 2019 Oct 1.
10
Light mixed-supervised segmentation for 3D medical image data.
Med Phys. 2024 Jan;51(1):167-178. doi: 10.1002/mp.16816. Epub 2023 Nov 1.

引用本文的文献

3
Artifact- and content-specific quality assessment for MRI with image rulers.
Med Image Anal. 2022 Apr;77:102344. doi: 10.1016/j.media.2021.102344. Epub 2022 Jan 20.
4
Single image super-resolution via Image Quality Assessment-Guided Deep Learning Network.
PLoS One. 2020 Oct 29;15(10):e0241313. doi: 10.1371/journal.pone.0241313. eCollection 2020.
5
Hierarchical Nonlocal Residual Networks for Image Quality Assessment of Pediatric Diffusion MRI With Limited and Noisy Annotations.
IEEE Trans Med Imaging. 2020 Nov;39(11):3691-3702. doi: 10.1109/TMI.2020.3002708. Epub 2020 Oct 28.

本文引用的文献

1
Two-Stream Convolutional Networks for Blind Image Quality Assessment.
IEEE Trans Image Process. 2019 May;28(5):2200-2211. doi: 10.1109/TIP.2018.2883741. Epub 2018 Nov 28.
2
Supervised machine learning quality control for magnetic resonance artifacts in neonatal data sets.
Hum Brain Mapp. 2019 Mar;40(4):1290-1297. doi: 10.1002/hbm.24449. Epub 2018 Nov 22.
3
Deep CNN-Based Blind Image Quality Predictor.
IEEE Trans Neural Netw Learn Syst. 2019 Jan;30(1):11-24. doi: 10.1109/TNNLS.2018.2829819. Epub 2018 Jun 12.
4
The UNC/UMN Baby Connectome Project (BCP): An overview of the study design and protocol development.
Neuroimage. 2019 Jan 15;185:891-905. doi: 10.1016/j.neuroimage.2018.03.049. Epub 2018 Mar 22.
5
End-to-End Blind Image Quality Assessment Using Deep Neural Networks.
IEEE Trans Image Process. 2018 Mar;27(3):1202-1213. doi: 10.1109/TIP.2017.2774045.
7
Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment.
IEEE Trans Image Process. 2018 Jan;27(1):206-219. doi: 10.1109/TIP.2017.2760518. Epub 2017 Oct 10.
8
Automated reference-free detection of motion artifacts in magnetic resonance images.
MAGMA. 2018 Apr;31(2):243-256. doi: 10.1007/s10334-017-0650-z. Epub 2017 Sep 20.
9
Automated image quality evaluation of T -weighted liver MRI utilizing deep learning architecture.
J Magn Reson Imaging. 2018 Mar;47(3):723-728. doi: 10.1002/jmri.25779. Epub 2017 Jun 3.
10
Automated Quality Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised Machine Learning Algorithm.
Front Neuroinform. 2016 Dec 19;10:52. doi: 10.3389/fninf.2016.00052. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验