Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela 15782, Spain; Department of Biochemistry and Molecular Biology, USC, Santiago de Compostela 15782, Spain.
Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC)-Health Research Institute (IDIS), Santiago de Compostela 15782, Spain; Department of Physiology, USC, Santiago de Compostela 15782, Spain.
Cell Stem Cell. 2020 Aug 6;27(2):300-314.e11. doi: 10.1016/j.stem.2020.04.016. Epub 2020 May 11.
RNA editing of adenosine to inosine (A to I) is catalyzed by ADAR1 and dramatically alters the cellular transcriptome, although its functional roles in somatic cell reprogramming are largely unexplored. Here, we show that loss of ADAR1-mediated A-to-I editing disrupts mesenchymal-to-epithelial transition (MET) during induced pluripotent stem cell (iPSC) reprogramming and impedes acquisition of induced pluripotency. Using chemical and genetic approaches, we show that absence of ADAR1-dependent RNA editing induces aberrant innate immune responses through the double-stranded RNA (dsRNA) sensor MDA5, unleashing endoplasmic reticulum (ER) stress and hindering epithelial fate acquisition. We found that A-to-I editing impedes MDA5 sensing and sequestration of dsRNAs encoding membrane proteins, which promote ER homeostasis by activating the PERK-dependent unfolded protein response pathway to consequently facilitate MET. This study therefore establishes a critical role for ADAR1 and its A-to-I editing activity during cell fate transitions and delineates a key regulatory layer underlying MET to control efficient reprogramming.
腺苷到肌苷的 RNA 编辑(A 到 I)由 ADAR1 催化,显著改变了细胞转录组,尽管其在体细胞重编程中的功能作用在很大程度上仍未被探索。在这里,我们表明 ADAR1 介导的 A 到 I 编辑的缺失会破坏诱导多能干细胞(iPSC)重编程过程中的间充质到上皮转化(MET),并阻碍获得诱导多能性。我们使用化学和遗传方法表明,ADAR1 依赖性 RNA 编辑的缺失会通过双链 RNA(dsRNA)传感器 MDA5 诱导异常的先天免疫反应,释放内质网(ER)应激并阻碍上皮命运获得。我们发现 A 到 I 编辑会阻碍 MDA5 对编码膜蛋白的 dsRNA 的感应和隔离,这些 dsRNA 通过激活 PERK 依赖性未折叠蛋白反应途径来促进 ER 稳态,从而促进 MET。因此,这项研究确立了 ADAR1 及其 A 到 I 编辑活性在细胞命运转变过程中的关键作用,并描绘了控制有效重编程的 MET 的关键调节层。