Suppr超能文献

与有序子集期望最大化(OSEM)重建相比,贝叶斯惩罚似然算法(Q.Clear®)对低对比度PET缺氧图像的影响。

Impact of the Bayesian penalized likelihood algorithm (Q.Clear®) in comparison with the OSEM reconstruction on low contrast PET hypoxic images.

作者信息

Texte Edgar, Gouel Pierrick, Thureau Sébastien, Lequesne Justine, Barres Bertrand, Edet-Sanson Agathe, Decazes Pierre, Vera Pierre, Hapdey Sébastien

机构信息

Nuclear Medicine Department, Henri Becquerel Cancer Center, Rouen, France.

QuantIF-LITIS EA4108, Rouen University Hospital, Rouen, France.

出版信息

EJNMMI Phys. 2020 May 12;7(1):28. doi: 10.1186/s40658-020-00300-3.

Abstract

PURPOSE

To determine the impact of the Bayesian penalized likelihood (BPL) reconstruction algorithm in comparison to OSEM on hypoxia PET/CT images of NSCLC using F-MIZO and F-FAZA.

MATERIALS AND METHODS

Images of low-contrasted (SBR = 3) micro-spheres of Jaszczak phantom were acquired. Twenty patients with lung neoplasia were included. Each patient benefitted from F-MISO and/or F-FAZA PET/CT exams, reconstructed with OSEM and BPL. Lesion was considered as hypoxic if the lesion SUV > 1.4. A blind evaluation of lesion detectability and image quality was performed on a set of 78 randomized BPL and OSEM images by 10 nuclear physicians. SUV, SUV and hypoxic volumes using 3 thresholding approaches were measured and compared for each reconstruction.

RESULTS

The phantom and patient datasets showed a significant increase of quantitative parameters using BPL compared to OSEM but had no impact on detectability. The optimal beta parameter determined by the phantom analysis was β350. Regarding patient data, there was no clear trend of image quality improvement using BPL. There was no correlation between SUV increase with BPL and either SUV or hypoxic volume from the initial OSEM reconstruction. Hypoxic volume obtained by a SUV > 1.4 thresholding was not impacted by the BPL reconstruction parameter.

CONCLUSION

BPL allows a significant increase in quantitative parameters and contrast without significantly improving the lesion detectability or image quality. The variation in hypoxic volume by BPL depends on the method used but SUV > 1.4 thresholding seems to be the more robust method, not impacted by the reconstruction method (BPL or OSEM).

TRIAL REGISTRATION

ClinicalTrials.gov, NCT02490696. Registered 1 June 2015.

摘要

目的

使用F-MIZO和F-FAZA,确定贝叶斯惩罚似然(BPL)重建算法与有序子集期望最大化(OSEM)算法相比,对非小细胞肺癌(NSCLC)缺氧PET/CT图像的影响。

材料与方法

采集Jaszczak体模低对比度(信噪比=3)微球的图像。纳入20例肺肿瘤患者。每位患者均接受了F-MISO和/或F-FAZA PET/CT检查,分别采用OSEM和BPL进行重建。若病变的标准化摄取值(SUV)>1.4,则认为该病变为缺氧状态。10名核医学医师对一组78张随机的BPL和OSEM图像进行了病变可检测性和图像质量的盲法评估。测量并比较每种重建方法使用3种阈值方法得到的SUV、SUV均值和缺氧体积。

结果

与OSEM相比,体模和患者数据集显示使用BPL时定量参数显著增加,但对可检测性无影响。通过体模分析确定的最佳β参数为β350。关于患者数据,使用BPL时图像质量没有明显的改善趋势。BPL导致的SUV增加与初始OSEM重建的SUV或缺氧体积之间没有相关性。SUV>1.4阈值法获得的缺氧体积不受BPL重建参数的影响。

结论

BPL可显著增加定量参数和对比度,但不会显著提高病变的可检测性或图像质量。BPL导致的缺氧体积变化取决于所使用的方法,但SUV>1.4阈值法似乎是更稳健的方法,不受重建方法(BPL或OSEM)的影响。

试验注册

ClinicalTrials.gov,NCT02490696。2015年6月1日注册。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad09/7218037/99665911e4e3/40658_2020_300_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验