Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
Neurocentre Magendie, INSERM U 862, Université de Bordeaux, Bordeaux Cedex, France.
J Neurophysiol. 2020 Jun 1;123(6):2326-2342. doi: 10.1152/jn.00179.2020. Epub 2020 May 13.
Serotoninergic (5-HT) neurons are powerful modulators of spinal locomotor circuits. Most studies on 5-HT modulation focused on the effect of exogenous 5-HT and these studies provided key information about the cellular mechanisms involved. Less is known about the effects of increased release of endogenous 5-HT with selective serotonin reuptake inhibitors. In mammals, such molecules were shown to destabilize the fictive locomotor output of spinal limb networks through 5-HT receptors. However, in tetrapods little is known about the effects of increased 5-HT release on the locomotor output of axial networks, which are coordinated with limb circuits during locomotion from basal vertebrates to mammals. Here, we examined the effect of citalopram on fictive locomotion generated in axial segments of isolated spinal cords in salamanders, a tetrapod where raphe 5-HT reticulospinal neurons and intraspinal 5-HT neurons are present as in other vertebrates. Using electrophysiological recordings of ventral roots, we show that fictive locomotion generated by bath-applied glutamatergic agonists is destabilized by citalopram. Citalopram-induced destabilization was prevented by a 5-HT receptor antagonist, whereas a 5-HT receptor agonist destabilized fictive locomotion. Using immunofluorescence experiments, we found 5-HT-positive fibers and varicosities in proximity with motoneurons and glutamatergic interneurons that are likely involved in rhythmogenesis. Our results show that increasing 5-HT release has a deleterious effect on axial locomotor activity through 5-HT receptors. This is consistent with studies in limb networks of turtle and mouse, suggesting that this part of the complex 5-HT modulation of spinal locomotor circuits is common to limb and axial networks in limbed vertebrates. Little is known about the modulation exerted by endogenous serotonin on axial locomotor circuits in tetrapods. Using axial ventral root recordings in salamanders, we found that a serotonin reuptake blocker destabilized fictive locomotor activity through 5-HT receptors. Our anatomical results suggest that serotonin is released on motoneurons and glutamatergic interneurons possibly involved in rhythmogenesis. Our study suggests that common serotoninergic mechanisms modulate axial motor circuits in amphibians and limb motor circuits in reptiles and mammals.
血清素能(5-HT)神经元是脊髓运动回路的强大调制器。大多数关于 5-HT 调制的研究都集中在外源 5-HT 的作用上,这些研究提供了有关涉及的细胞机制的关键信息。关于选择性 5-羟色胺再摄取抑制剂引起的内源性 5-HT 释放增加的影响知之甚少。在哺乳动物中,这些分子通过 5-HT 受体使脊髓肢体网络的虚拟运动输出不稳定。然而,在四足动物中,关于增加的 5-HT 释放对轴向网络的运动输出的影响知之甚少,在从基础脊椎动物到哺乳动物的运动过程中,轴向网络与肢体回路协调。在这里,我们检查了西酞普兰对分离的蝾螈脊髓轴段中产生的虚拟运动的影响,在其他脊椎动物中,轴突 5-HT 网状脊髓神经元和脊髓内 5-HT 神经元存在于蝾螈中。使用腹根的电生理记录,我们表明,通过浴应用谷氨酸能激动剂产生的虚拟运动被西酞普兰破坏。5-HT 受体拮抗剂可预防西酞普兰诱导的不稳定性,而 5-HT 受体激动剂破坏虚拟运动。通过免疫荧光实验,我们发现 5-HT 阳性纤维和轴突与运动神经元和谷氨酸能中间神经元接近,这些神经元可能参与节律发生。我们的结果表明,增加 5-HT 释放通过 5-HT 受体对轴向运动活动产生有害影响。这与龟和鼠的肢体网络研究一致,表明这部分复杂的 5-HT 对脊髓运动回路的调制在有肢脊椎动物的肢体和轴向网络中是共同的。关于内源性 5-羟色胺对四足动物轴向运动回路的调制知之甚少。通过在蝾螈中记录轴向腹根,我们发现 5-HT 再摄取阻滞剂通过 5-HT 受体破坏虚拟运动活动。我们的解剖结果表明,5-HT 可能释放到运动神经元和谷氨酸能中间神经元上,这些神经元可能参与节律发生。我们的研究表明,共同的 5-羟色胺机制调节两栖动物的轴向运动回路和爬行动物和哺乳动物的肢体运动回路。