Suppr超能文献

采用机器学习方法提高左心室肥厚的心电图诊断准确性。

Improvement of electrocardiographic diagnostic accuracy of left ventricular hypertrophy using a Machine Learning approach.

机构信息

Universidad de Monterrey, Escuela de Medicina, Especialidades Médicas, Monterrey, Nuevo León, Mexico.

Departamento de Medicina Interna, Hospital Christus Muguerza Alta Especialidad, Monterrey, Nuevo Leon, Mexico.

出版信息

PLoS One. 2020 May 13;15(5):e0232657. doi: 10.1371/journal.pone.0232657. eCollection 2020.

Abstract

The electrocardiogram (ECG) is the most common tool used to predict left ventricular hypertrophy (LVH). However, it is limited by its low accuracy (<60%) and sensitivity (30%). We set forth the hypothesis that the Machine Learning (ML) C5.0 algorithm could optimize the ECG in the prediction of LVH by echocardiography (Echo) while also establishing ECG-LVH phenotypes. We used Echo as the standard diagnostic tool to detect LVH and measured the ECG abnormalities found in Echo-LVH. We included 432 patients (power = 99%). Of these, 202 patients (46.7%) had Echo-LVH and 240 (55.6%) were males. We included a wide range of ventricular masses and Echo-LVH severities which were classified as mild (n = 77, 38.1%), moderate (n = 50, 24.7%) and severe (n = 75, 37.1%). Data was divided into a training/testing set (80%/20%) and we applied logistic regression analysis on the ECG measurements. The logistic regression model with the best ability to identify Echo-LVH was introduced into the C5.0 ML algorithm. We created multiple decision trees and selected the tree with the highest performance. The resultant five-level binary decision tree used only six predictive variables and had an accuracy of 71.4% (95%CI, 65.5-80.2), a sensitivity of 79.6%, specificity of 53%, positive predictive value of 66.6% and a negative predictive value of 69.3%. Internal validation reached a mean accuracy of 71.4% (64.4-78.5). Our results were reproduced in a second validation group and a similar diagnostic accuracy was obtained, 73.3% (95%CI, 65.5-80.2), sensitivity (81.6%), specificity (69.3%), positive predictive value (56.3%) and negative predictive value (88.6%). We calculated the Romhilt-Estes multilevel score and compared it to our model. The accuracy of the Romhilt-Estes system had an accuracy of 61.3% (CI95%, 56.5-65.9), a sensitivity of 23.2% and a specificity of 94.8% with similar results in the external validation group. In conclusion, the C5.0 ML algorithm surpassed the accuracy of current ECG criteria in the detection of Echo-LVH. Our new criteria hinge on ECG abnormalities that identify high-risk patients and provide some insight on electrogenesis in Echo-LVH.

摘要

心电图(ECG)是预测左心室肥厚(LVH)最常用的工具。然而,它的准确性(<60%)和灵敏度(30%)有限。我们提出假设,机器学习(ML)C5.0 算法可以通过超声心动图(Echo)优化心电图在 LVH 预测中的作用,同时建立心电图-LVH 表型。我们使用 Echo 作为标准诊断工具来检测 LVH,并测量在 Echo-LVH 中发现的心电图异常。我们纳入了 432 名患者(功率=99%)。其中,202 名患者(46.7%)有 Echo-LVH,240 名患者(55.6%)为男性。我们纳入了广泛的心室质量和 Echo-LVH 严重程度,分为轻度(n=77,38.1%)、中度(n=50,24.7%)和重度(n=75,37.1%)。数据分为训练/测试集(80%/20%),我们对心电图测量值进行逻辑回归分析。将识别 Echo-LVH 能力最佳的逻辑回归模型引入 C5.0 ML 算法。我们创建了多个决策树,并选择性能最佳的树。最终的五级二分决策树仅使用了六个预测变量,准确率为 71.4%(95%CI,65.5-80.2),灵敏度为 79.6%,特异性为 53%,阳性预测值为 66.6%,阴性预测值为 69.3%。内部验证的平均准确率为 71.4%(64.4-78.5)。我们的结果在第二个验证组中得到了重现,并且获得了类似的诊断准确性,为 73.3%(95%CI,65.5-80.2),灵敏度为 81.6%,特异性为 69.3%,阳性预测值为 56.3%,阴性预测值为 88.6%。我们计算了 Romhilt-Estes 多级评分,并将其与我们的模型进行了比较。Romhilt-Estes 系统的准确率为 61.3%(CI95%,56.5-65.9),灵敏度为 23.2%,特异性为 94.8%,在外部验证组中也得到了类似的结果。总之,C5.0 ML 算法在检测 Echo-LVH 方面超过了当前心电图标准的准确性。我们的新标准基于可识别高危患者的心电图异常,并为 Echo-LVH 中的电生成提供了一些见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39e5/7219774/1d57f84d6dc5/pone.0232657.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验