Suppr超能文献

基于计算机心电图数据和机器学习优化心电图以检测超声心动图左心室肥厚。

Optimizing ECG to detect echocardiographic left ventricular hypertrophy with computer-based ECG data and machine learning.

机构信息

School of Medicine, Medical Specialties, University of Monterrey, Monterrey, Nuevo León, Mexico.

Department of Internal Medicine, Hospital Christus Muguerza Alta Especialidad, Monterrey, Nuevo León, Mexico.

出版信息

PLoS One. 2021 Nov 30;16(11):e0260661. doi: 10.1371/journal.pone.0260661. eCollection 2021.

Abstract

BACKGROUND

Left ventricular hypertrophy detected by echocardiography (Echo-LVH) is an independent predictor of mortality. Integration of the Philips DXL-16 algorithm into the electrocardiogram (ECG) extensively analyses the electricity of the heart. Machine learning techniques such as the C5.0 could lead to a new decision tree criterion to detect Echo-LVH.

OBJECTIVES

To search for a new combination of ECG parameters predictive of Echo-LVH. The final model is called the Cardiac Hypertrophy Computer-based model (CHCM).

METHODS

We extracted the 458 ECG parameters provided by the Philips DXL-16 algorithm in patients with Echo-LVH and controls. We used the C5.0 ML algorithm to train, test, and validate the CHCM. We compared its diagnostic performance to validate state-of-the-art criteria in our patient cohort.

RESULTS

We included 439 patients and considered an alpha value of 0.05 and a power of 99%. The CHCM includes T voltage in I (≤0.055 mV), peak-to-peak QRS distance in aVL (>1.235 mV), and peak-to-peak QRS distance in aVF (>0.178 mV). The CHCM had an accuracy of 70.5% (CI95%, 65.2-75.5), a sensitivity of 74.3%, and a specificity of 68.7%. In the external validation cohort (n = 156), the CHCM had an accuracy of 63.5% (CI95%, 55.4-71), a sensitivity of 42%, and a specificity of 82.9%. The accuracies of the most relevant state-of-the-art criteria were: Romhilt-Estes (57.4%, CI95% 49-65.5), VDP Cornell (55.7%, CI95%47.6-63.7), Cornell (59%, CI95%50.8-66.8), Dalfó (62.9%, CI95%54.7-70.6), Sokolow Lyon (53.9%, CI95%45.7-61.9), and Philips DXL-16 algorithm (54.5%, CI95%46.3-62.5).

CONCLUSION

ECG computer-based data and the C5.0 determined a new set of ECG parameters to predict Echo-LVH. The CHCM classifies patients as Echo-LVH with repolarization abnormalities or LVH with increased voltage. The CHCM has a similar accuracy, and is slightly more sensitive than the state-of-the-art criteria.

摘要

背景

超声心动图(Echo-LVH)检测到的左心室肥厚是死亡率的独立预测因子。飞利浦 DXL-16 算法将心电图(ECG)广泛分析心脏的电流。C5.0 等机器学习技术可以为检测 Echo-LVH 提供新的决策树标准。

目的

寻找新的 ECG 参数组合来预测 Echo-LVH。最终模型称为基于计算机的心脏肥大模型(CHCM)。

方法

我们提取了 Echo-LVH 患者和对照组中飞利浦 DXL-16 算法提供的 458 个 ECG 参数。我们使用 C5.0 ML 算法对 CHCM 进行训练、测试和验证。我们将其诊断性能与我们患者队列中的最新标准进行了比较。

结果

我们纳入了 439 名患者,考虑到α值为 0.05 和功率为 99%。CHCM 包括 I 导联 T 波电压(≤0.055 mV)、aVL 导联 QRS 波峰到峰距离(>1.235 mV)和 aVF 导联 QRS 波峰到峰距离(>0.178 mV)。CHCM 的准确率为 70.5%(95%CI95%,65.2-75.5),灵敏度为 74.3%,特异性为 68.7%。在外部验证队列(n=156)中,CHCM 的准确率为 63.5%(95%CI95%,55.4-71),灵敏度为 42%,特异性为 82.9%。最相关的最新标准的准确率为:Romhilt-Estes(57.4%,95%CI95%,49-65.5)、VDP Cornell(55.7%,95%CI95%,47.6-63.7)、Cornell(59%,95%CI95%,50.8-66.8)、Dalfó(62.9%,95%CI95%,54.7-70.6)、Sokolow Lyon(53.9%,95%CI95%,45.7-61.9)和飞利浦 DXL-16 算法(54.5%,95%CI95%,46.3-62.5)。

结论

基于心电图计算机的数据和 C5.0 确定了一组新的 ECG 参数来预测 Echo-LVH。CHCM 将患者分类为具有复极异常的 Echo-LVH 或具有电压升高的 LVH。CHCM 的准确率与最新标准相似,灵敏度略高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f825/8631676/a46ca79a1017/pone.0260661.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验