Suppr超能文献

使用心电图信号检测左心室肥厚。

Left ventricular hypertrophy detection using electrocardiographic signal.

机构信息

Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan.

Bachelor Degree Program of Artificial Intelligence, National Taichung University of Science and Technology, Taichung, Taiwan.

出版信息

Sci Rep. 2023 Feb 13;13(1):2556. doi: 10.1038/s41598-023-28325-5.

Abstract

Left ventricular hypertrophy (LVH) indicates subclinical organ damage, associating with the incidence of cardiovascular diseases. From the medical perspective, electrocardiogram (ECG) is a low-cost, non-invasive, and easily reproducible tool that is often used as a preliminary diagnosis for the detection of heart disease. Nowadays, there are many criteria for assessing LVH by ECG. These criteria usually include that voltage combination of RS peaks in multi-lead ECG must be greater than one or more thresholds for diagnosis. We developed a system for detecting LVH using ECG signals by two steps: firstly, the R-peak and S-valley amplitudes of the 12-lead ECG were extracted to automatically obtain a total of 24 features and ECG beats of each case (LVH or non-LVH) were segmented; secondly, a back propagation neural network (BPN) was trained using a dataset with these features. Echocardiography (ECHO) was used as the gold standard for diagnosing LVH. The number of LVH cases (of a Taiwanese population) identified was 173. As each ECG sequence generally included 8 to 13 cycles (heartbeats) due to differences in heart rate, etc., we identified 1466 ECG cycles of LVH patients after beat segmentation. Results showed that our BPN model for detecting LVH reached the testing accuracy, precision, sensitivity, and specificity of 0.961, 0.958, 0.966 and 0.956, respectively. Detection performances of our BPN model, on the whole, outperform 7 methods using ECG criteria and many ECG-based artificial intelligence (AI) models reported previously for detecting LVH.

摘要

左心室肥厚(LVH)表示亚临床器官损伤,与心血管疾病的发生率相关。从医学角度来看,心电图(ECG)是一种低成本、非侵入性且易于复制的工具,通常用作心脏病初步诊断的检测手段。如今,有许多通过心电图评估 LVH 的标准。这些标准通常包括多导联心电图中 RS 波峰的电压组合必须大于一个或多个阈值才能用于诊断。我们开发了一种使用心电图信号检测 LVH 的系统,该系统分两步进行:首先,提取 12 导联心电图的 R 波峰和 S 波谷幅度,自动获得总共 24 个特征,并对每个病例(LVH 或非 LVH)的心电图进行分段;其次,使用包含这些特征的数据集对反向传播神经网络(BPN)进行训练。超声心动图(ECHO)被用作诊断 LVH 的金标准。识别出的 LVH 病例数量(来自台湾人群)为 173 例。由于心率等差异,每个心电图序列通常包含 8 到 13 个周期(心跳),因此,在对心跳进行分段后,我们共识别出 1466 个 LVH 患者的心电图周期。结果表明,我们用于检测 LVH 的 BPN 模型的测试准确率、精确度、灵敏度和特异性分别为 0.961、0.958、0.966 和 0.956。总的来说,我们的 BPN 模型的检测性能优于使用 ECG 标准的 7 种方法和之前报道的许多基于 ECG 的人工智能(AI)模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4037/9925743/31aa10ecfc04/41598_2023_28325_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验