Suppr超能文献

利用多个性状基因组预测、基因型与环境互作和空间效应来提高产量数据的预测准确性。

Use of multiple traits genomic prediction, genotype by environment interactions and spatial effect to improve prediction accuracy in yield data.

机构信息

Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark.

Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.

出版信息

PLoS One. 2020 May 13;15(5):e0232665. doi: 10.1371/journal.pone.0232665. eCollection 2020.

Abstract

Genomic selection has been extensively implemented in plant breeding schemes. Genomic selection incorporates dense genome-wide markers to predict the breeding values for important traits based on information from genotype and phenotype records on traits of interest in a reference population. To date, most relevant investigations have been performed using single trait genomic prediction models (STGP). However, records for several traits at once are usually documented for breeding lines in commercial breeding programs. By incorporating benefits from genetic characterizations of correlated phenotypes, multiple trait genomic prediction (MTGP) may be a useful tool for improving prediction accuracy in genetic evaluations. The objective of this study was to test whether the use of MTGP and including proper modeling of spatial effects can improve the prediction accuracy of breeding values in commercial barley and wheat breeding lines. We genotyped 1,317 spring barley and 1,325 winter wheat lines from a commercial breeding program with the Illumina 9K barley and 15K wheat SNP-chip (respectively) and phenotyped them across multiple years and locations. Results showed that the MTGP approach increased correlations between future performance and estimated breeding value of yields by 7% in barley and by 57% in wheat relative to using the STGP approach for each trait individually. Analyses combining genomic data, pedigree information, and proper modeling of spatial effects further increased the prediction accuracy by 4% in barley and 3% in wheat relative to the model using genomic relationships only. The prediction accuracy for yield in wheat and barley yield trait breeding, were improved by combining MTGP and spatial effects in the model.

摘要

基因组选择已广泛应用于植物育种计划中。基因组选择结合了密集的全基因组标记,根据参考群体中与目标性状有关的基因型和表型记录,预测重要性状的育种值。迄今为止,大多数相关研究都是使用单性状基因组预测模型(STGP)进行的。然而,商业育种计划中的育种系通常同时记录了几个性状的记录。通过整合相关表型遗传特征的优势,多性状基因组预测(MTGP)可能是提高遗传评估中预测准确性的有用工具。本研究的目的是检验在商业大麦和小麦育种系中,使用 MTGP 和适当的空间效应建模是否可以提高育种值的预测准确性。我们对来自商业育种计划的 1317 个春大麦和 1325 个冬小麦系进行了基因分型,这些系分别使用了 Illumina 9K 大麦和 15K 小麦 SNP 芯片进行基因分型,并在多年和多个地点对其进行了表型分析。结果表明,与单独使用 STGP 方法对每个性状进行分析相比,MTGP 方法将大麦的未来表现与估计的产量育种值之间的相关性提高了 7%,小麦的相关性提高了 57%。将基因组数据、系谱信息和适当的空间效应分析相结合,与仅使用基因组关系的模型相比,在大麦中进一步提高了 4%的预测准确性,在小麦中提高了 3%。通过在模型中结合 MTGP 和空间效应,提高了小麦和大麦产量性状的产量预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6222/7219756/5acb6c06e349/pone.0232665.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验