Suppr超能文献

比较春小麦农艺和抗病性状的单性状和多性状基因组预测。

Comparison of single-trait and multi-trait genomic predictions on agronomic and disease resistance traits in spring wheat.

机构信息

Department of Agricultural, Food, and Nutritional Science, 4-10 Agriculture-Forestry Centre, University of Alberta, Edmonton, AB, T6G 2P5, Canada.

International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, DF, Mexico.

出版信息

Theor Appl Genet. 2022 Aug;135(8):2747-2767. doi: 10.1007/s00122-022-04147-3. Epub 2022 Jun 23.

Abstract

This study performed comprehensive analyses on the predictive abilities of single-trait and two multi-trait models in three populations. Our results demonstrated the superiority of multi-traits over single-trait models across seven agronomic and four to seven disease resistance traits of different genetic architecture. The predictive ability of multi-trait and single-trait prediction models has not been investigated on diverse traits evaluated under organic and conventional management systems. Here, we compared the predictive abilities of 25% of a testing set that has not been evaluated for a single trait (ST), not evaluated for multi-traits (MT1), and evaluated for some traits but not others (MT2) in three spring wheat populations genotyped either with the wheat 90K single nucleotide polymorphisms array or DArTseq. Analyses were performed on seven agronomic traits evaluated under conventional and organic management systems, four to seven disease resistance traits, and all agronomic and disease resistance traits simultaneously. The average prediction accuracies of the ST, MT1, and MT2 models varied from 0.03 to 0.78 (mean 0.41), from 0.05 to 0.82 (mean 0.47), and from 0.05 to 0.92 (mean 0.67), respectively. The predictive ability of the MT2 model was significantly greater than the ST model in all traits and populations except common bunt with the MT1 model being intermediate between them. The MT2 model increased prediction accuracies over the ST and MT1 models in all traits by 9.0-82.4% (mean 37.3%) and 2.9-82.5% (mean 25.7%), respectively, except common bunt that showed up to 7.7% smaller accuracies in two populations. A joint analysis of all agronomic and disease resistance traits further improved accuracies within the MT1 and MT2 models on average by 21.4% and 17.4%, respectively, as compared to either the agronomic or disease resistance traits, demonstrating the high potential of the multi-traits models in improving prediction accuracies.

摘要

本研究在三个群体中对单性状和两种多性状模型的预测能力进行了综合分析。我们的结果表明,多性状模型在七种农艺性状和四种至七种具有不同遗传结构的抗病性性状方面优于单性状模型。在有机和常规管理系统下评估的不同性状上,尚未对多性状和单性状预测模型的预测能力进行研究。在这里,我们比较了三种春小麦群体中 25%的测试集的预测能力,这些测试集未针对单个性状(ST)、未针对多个性状(MT1)以及针对部分但非全部性状(MT2)进行评估。这些测试集使用小麦 90K 单核苷酸多态性阵列或 DArTseq 进行了基因型分析。在常规和有机管理系统下评估了七种农艺性状、四种至七种抗病性性状以及所有农艺和抗病性性状,同时进行了分析。ST、MT1 和 MT2 模型的平均预测准确性从 0.03 到 0.78(平均值为 0.41)、从 0.05 到 0.82(平均值为 0.47)和从 0.05 到 0.92(平均值为 0.67)不等。除普通黑穗病外,MT2 模型在所有性状和群体中的预测能力均显著大于 ST 模型,而 MT1 模型则介于两者之间。在所有性状和群体中,MT2 模型比 ST 和 MT1 模型的预测准确性分别提高了 9.0-82.4%(平均值 37.3%)和 2.9-82.5%(平均值 25.7%),除了在两个群体中准确性降低了 7.7%的普通黑穗病。对所有农艺和抗病性性状的联合分析进一步提高了 MT1 和 MT2 模型的准确性,平均分别提高了 21.4%和 17.4%,与农艺或抗病性性状相比,表明多性状模型在提高预测准确性方面具有很高的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验