Suppr超能文献

利用 OpenACC 在 GPU 上加速蛋白质结构化学位移的预测。

Accelerating prediction of chemical shift of protein structures on GPUs: Using OpenACC.

机构信息

Dept. of Computer and Information Sciences, University of Delaware, Newark, Delaware, United States of America.

Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, United States of America.

出版信息

PLoS Comput Biol. 2020 May 13;16(5):e1007877. doi: 10.1371/journal.pcbi.1007877. eCollection 2020 May.

Abstract

Experimental chemical shifts (CS) from solution and solid state magic-angle-spinning nuclear magnetic resonance (NMR) spectra provide atomic level information for each amino acid within a protein or protein complex. However, structure determination of large complexes and assemblies based on NMR data alone remains challenging due to the complexity of the calculations. Here, we present a hardware accelerated strategy for the estimation of NMR chemical-shifts of large macromolecular complexes based on the previously published PPM_One software. The original code was not viable for computing large complexes, with our largest dataset taking approximately 14 hours to complete. Our results show that serial code refactoring and parallel acceleration brought down the time taken of the software running on an NVIDIA Volta 100 (V100) Graphic Processing Unit (GPU) to 46.71 seconds for our largest dataset of 11.3 million atoms. We use OpenACC, a directive-based programming model for porting the application to a heterogeneous system consisting of x86 processors and NVIDIA GPUs. Finally, we demonstrate the feasibility of our approach in systems of increasing complexity ranging from 100K to 11.3M atoms.

摘要

实验化学位移(CS)来自溶液和固态魔角旋转核磁共振(NMR)谱,为蛋白质或蛋白质复合物中的每个氨基酸提供原子水平的信息。然而,仅基于 NMR 数据确定大型复合物和组装体的结构仍然具有挑战性,这是由于计算的复杂性所致。在这里,我们提出了一种基于先前发布的 PPM_One 软件的硬件加速策略,用于估算大型大分子复合物的 NMR 化学位移。原始代码不适用于计算大型复合物,我们最大的数据集大约需要 14 小时才能完成。我们的结果表明,串行代码重构和并行加速使软件在 NVIDIA Volta 100(V100)图形处理单元(GPU)上运行的时间从我们最大数据集(1130 万个原子)的 46.71 秒缩短。我们使用 OpenACC,这是一种针对由 x86 处理器和 NVIDIA GPU 组成的异构系统进行应用程序移植的基于指令的编程模型。最后,我们证明了我们的方法在从 10 万到 1130 万原子的系统中具有可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b02c/7250467/acac3648ecc2/pcbi.1007877.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验