Suppr超能文献

利用强化学习实现移动健身应用的个性化定制。

Personalizing Mobile Fitness Apps using Reinforcement Learning.

作者信息

Zhou Mo, Mintz Yonatan, Fukuoka Yoshimi, Goldberg Ken, Flowers Elena, Kaminsky Philip, Castillejo Alejandro, Aswani Anil

机构信息

Department of Industrial Engineering and Operations Research University of California, Berkeley, CA, USA.

Department of Physiological Nursing Institute for Health & Aging, School of Nursing University of California, San Francisco, CA, USA.

出版信息

CEUR Workshop Proc. 2018 Mar 7;2068.

Abstract

Despite the vast number of mobile fitness applications (apps) and their potential advantages in promoting physical activity, many existing apps lack behavior-change features and are not able to maintain behavior change motivation. This paper describes a novel fitness app called CalFit, which implements important behavior-change features like dynamic goal setting and self-monitoring. CalFit uses a reinforcement learning algorithm to generate personalized daily step goals that are challenging but attainable. We conducted the Mobile Student Activity Reinforcement (mSTAR) study with 13 college students to evaluate the efficacy of the CalFit app. The control group (receiving goals of 10,000 steps/day) had a decrease in daily step count of 1,520 (SD ± 740) between baseline and 10-weeks, compared to an increase of 700 (SD ± 830) in the intervention group (receiving personalized step goals). The difference in daily steps between the two groups was 2,220, with a statistically significant = 0.039.

摘要

尽管移动健身应用程序(应用)数量众多,且在促进身体活动方面具有潜在优势,但许多现有应用缺乏行为改变功能,无法维持行为改变的动力。本文介绍了一款名为CalFit的新型健身应用,它实现了动态目标设定和自我监测等重要行为改变功能。CalFit使用强化学习算法来生成具有挑战性但可实现的个性化每日步数目标。我们对13名大学生进行了移动学生活动强化(mSTAR)研究,以评估CalFit应用的效果。对照组(接受每天10000步的目标)在基线和10周之间每日步数减少了1520(标准差±740),而干预组(接受个性化步数目标)增加了700(标准差±830)。两组之间每日步数的差异为2220,具有统计学意义(P = 0.039)。

相似文献

引用本文的文献

1
A Deployed Online Reinforcement Learning Algorithm In An Oral Health Clinical Trial.一种应用于口腔健康临床试验的在线强化学习算法
Proc AAAI Conf Artif Intell. 2025;39(28):28792-28800. doi: 10.1609/aaai.v39i28.35143. Epub 2025 Apr 11.

本文引用的文献

1
Behavioral Analytics for Myopic Agents.近视行为主体的行为分析
Eur J Oper Res. 2023 Oct 16;310(2):793-811. doi: 10.1016/j.ejor.2023.03.034. Epub 2023 Mar 31.
2
Behavioral Modeling in Weight Loss Interventions.减肥干预中的行为建模
Eur J Oper Res. 2019 Feb 1;272(3):1058-1072. doi: 10.1016/j.ejor.2018.07.011. Epub 2018 Jul 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验