Suppr超能文献

生物振荡器模型中的参数估计:一种自动化正则化估计方法。

Parameter estimation in models of biological oscillators: an automated regularised estimation approach.

机构信息

(Bio)Process Engineering Group, IIM-CSIC, Eduardo Cabello 6, Vigo, 36208, Spain.

RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany.

出版信息

BMC Bioinformatics. 2019 Feb 15;20(1):82. doi: 10.1186/s12859-019-2630-y.

Abstract

BACKGROUND

Dynamic modelling is a core element in the systems biology approach to understanding complex biosystems. Here, we consider the problem of parameter estimation in models of biological oscillators described by deterministic nonlinear differential equations. These problems can be extremely challenging due to several common pitfalls: (i) a lack of prior knowledge about parameters (i.e. massive search spaces), (ii) convergence to local optima (due to multimodality of the cost function), (iii) overfitting (fitting the noise instead of the signal) and (iv) a lack of identifiability. As a consequence, the use of standard estimation methods (such as gradient-based local ones) will often result in wrong solutions. Overfitting can be particularly problematic, since it produces very good calibrations, giving the impression of an excellent result. However, overfitted models exhibit poor predictive power. Here, we present a novel automated approach to overcome these pitfalls. Its workflow makes use of two sequential optimisation steps incorporating three key algorithms: (1) sampling strategies to systematically tighten the parameter bounds reducing the search space, (2) efficient global optimisation to avoid convergence to local solutions, (3) an advanced regularisation technique to fight overfitting. In addition, this workflow incorporates tests for structural and practical identifiability.

RESULTS

We successfully evaluate this novel approach considering four difficult case studies regarding the calibration of well-known biological oscillators (Goodwin, FitzHugh-Nagumo, Repressilator and a metabolic oscillator). In contrast, we show how local gradient-based approaches, even if used in multi-start fashion, are unable to avoid the above-mentioned pitfalls.

CONCLUSIONS

Our approach results in more efficient estimations (thanks to the bounding strategy) which are able to escape convergence to local optima (thanks to the global optimisation approach). Further, the use of regularisation allows us to avoid overfitting, resulting in more generalisable calibrated models (i.e. models with greater predictive power).

摘要

背景

动态建模是理解复杂生物系统的系统生物学方法的核心要素。在这里,我们考虑由确定性非线性微分方程描述的生物振荡器模型中的参数估计问题。由于以下几个常见的陷阱,这些问题可能极具挑战性:(i)缺乏有关参数的先验知识(即大规模搜索空间),(ii)由于成本函数的多模态性而导致收敛到局部最优值,(iii)过度拟合(拟合噪声而不是信号)和(iv)缺乏可识别性。因此,标准的估计方法(例如基于梯度的局部方法)的使用通常会导致错误的解决方案。过度拟合可能特别成问题,因为它产生了非常好的校准,给人以出色结果的印象。但是,过度拟合的模型表现出较差的预测能力。在这里,我们提出了一种新颖的自动化方法来克服这些陷阱。它的工作流程利用两个顺序优化步骤,其中包含三个关键算法:(1)采样策略,可系统地收紧参数范围,从而缩小搜索空间,(2)有效的全局优化,以避免收敛到局部解决方案,(3)高级正则化技术,以克服过度拟合。此外,该工作流程还包含了结构和实际可识别性的测试。

结果

我们成功地评估了这种新颖的方法,考虑了四个关于著名生物振荡器(Goodwin、FitzHugh-Nagumo、Repressilator 和代谢振荡器)校准的困难案例研究。相比之下,我们展示了即使使用多起点方式,基于局部梯度的方法也无法避免上述陷阱。

结论

我们的方法导致了更有效的估计(由于边界策略),从而能够避免收敛到局部最优值(由于全局优化方法)。此外,正则化的使用使我们能够避免过度拟合,从而得到更具泛化能力的校准模型(即具有更大预测能力的模型)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26d7/6377730/5b67d790a989/12859_2019_2630_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验