Suppr超能文献

CT 金属伪影降低算法:客观性能评估框架的构建。

CT metal artifact reduction algorithms: Toward a framework for objective performance assessment.

机构信息

Diagnostic X-Ray Systems Branch, Office of In Vitro Diagnostic Devices and Radiological Health, Center for Devices and Radiological Health, United States Food & Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, 20993, USA.

Canon Medical Systems, USA, Inc., 2441 Michelle Drive, Tustin, CA, 92780, USA.

出版信息

Med Phys. 2020 Aug;47(8):3344-3355. doi: 10.1002/mp.14231. Epub 2020 Jun 5.

Abstract

PURPOSE

Although several metal artifact reduction (MAR) algorithms for computed tomography (CT) scanning are commercially available, no quantitative, rigorous, and reproducible method exists for assessing their performance. The lack of assessment methods poses a challenge to regulators, consumers, and industry. We explored a phantom-based framework for assessing an important aspect of MAR performance: how applying MAR in the presence of metal affects model observer performance at a low-contrast detectability (LCD) task This work is, to our knowledge, the first model observer-based framework for the evaluation of MAR algorithms in the published literature.

METHODS

We designed a numerical head phantom with metal implants. In order to incorporate an element of randomness, the phantom included a rotatable inset with an inhomogeneous background. We generated simulated projection data for the phantom. We applied two variants of a simple MAR algorithm, sinogram inpainting, to the projection data, that we reconstructed using filtered backprojection. To assess how MAR affected observer performance, we examined the detectability of a signal at the center of a region of interest (ROI) by a channelized Hotelling observer (CHO). As a figure of merit, we used the area under the ROC curve (AUC).

RESULTS

We used simulation to test our framework on two variants of the MAR technique of sinogram inpainting. We found that our method was able to resolve the difference in two different MAR algorithms' effect on LCD task performance, as well as the difference in task performances when MAR was applied, vs not.

CONCLUSION

We laid out a phantom-based framework for objective assessment of how MAR impacts low-contrast detectability, that we tested on two MAR algorithms. Our results demonstrate the importance of testing MAR performance over a range of object and imaging parameters, since applying MAR does not always improve the quality of an image for a given diagnostic task. Our framework is an initial step toward developing a more comprehensive objective assessment method for MAR, which would require developing additional phantoms and methods specific to various clinical applications of MAR, and increasing study efficiency.

摘要

目的

虽然有几种商业化的计算机断层扫描(CT)扫描金属伪影减少(MAR)算法,但目前还没有用于评估其性能的定量、严格和可重复的方法。缺乏评估方法给监管机构、消费者和行业带来了挑战。我们探索了一种基于体模的框架,用于评估 MAR 性能的一个重要方面:在存在金属的情况下应用 MAR 如何影响低对比度检测(LCD)任务的模型观察者性能。据我们所知,这是发表文献中首次基于模型观察者的 MAR 算法评估框架。

方法

我们设计了一个带有金属植入物的数值头部体模。为了纳入随机性元素,该体模包括一个具有不均匀背景的可旋转插件。我们为该体模生成了模拟投影数据。我们将两种简单的 MAR 算法变体(正弦图修复)应用于投影数据,然后使用滤波反投影重建。为了评估 MAR 如何影响观察者的性能,我们通过通道化 Hotelling 观察者(CHO)检查 ROI 中心信号的检测能力。作为一个衡量标准,我们使用 ROC 曲线下的面积(AUC)。

结果

我们使用模拟来测试我们的框架在两种正弦图修复 MAR 技术变体上的性能。我们发现,我们的方法能够分辨两种不同 MAR 算法对 LCD 任务性能的影响,以及应用 MAR 与不应用 MAR 时任务性能的差异。

结论

我们提出了一种基于体模的框架,用于客观评估 MAR 对低对比度检测的影响,我们在两种 MAR 算法上进行了测试。我们的结果表明,在给定的诊断任务中,应用 MAR 并不总是会改善图像质量,因此测试 MAR 性能时需要考虑一系列物体和成像参数。我们的框架是开发更全面的 MAR 客观评估方法的初始步骤,这需要开发针对各种 MAR 临床应用的附加体模和方法,并提高研究效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a701/7496341/40be0b2df7fb/MP-47-3344-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验