Suppr超能文献

金属伪影减少的修复滤波(IMIF-MAR)在计算机断层扫描中的应用。

Inpainting-filtering for metal artifact reduction (IMIF-MAR) in computed tomography.

机构信息

Departamento de Electrónica y Telecomunicaciones, Universidad Central 'Marta Abreu' de Las Villas, Santa Clara, Cuba.

Departamento de Control Automático, Universidad Central 'Marta Abreu' de Las Villas, Carretera a Camajuani km 5 ½, 54830, Santa Clara, Villa Clara, Cuba.

出版信息

Phys Eng Sci Med. 2021 Jun;44(2):409-423. doi: 10.1007/s13246-021-00990-8. Epub 2021 Mar 24.

Abstract

The reduction of metal artifacts remains a challenge in computed tomography because they decrease image quality, and consequently might affect the medical diagnosis. The objective of this study is to present a novel method to correct metal artifacts based solely on the CT-slices. The proposed method consists of four steps. First, metal implants in the original CT-slice are segmented using an entropy based method, producing a metal image. Second, a prior image is acquired using three transformations: Gaussian filter, Parisotto and Schoenlieb inpainting method with the Mumford-Shah image model and L0 Gradient Minimization method (L0GM). Next, based on the projections from the original CT-slice, prior image and metal image, the sinogram is corrected in the traces affected by metal in the process called normalization and denormalization. Finally, the reconstructed image is obtained by FBP and a Nonlocal Means (NLM) filtering. The efficacy of the algorithm is evaluated by comparing five image quality metrics of the images and by inspecting regions of interest (ROI). Phantom data as well as clinical datasets are included. The proposed method is compared with three established metal artifact reduction (MAR) methods. The results from a phantom and clinical dataset show the visible reduction of artifacts. The conclusion is that IMIF-MAR method can reduce streak metal artifacts effectively and avoid new artifacts around metal implants, while preserving the anatomical structures. Considering both clinical and phantom studies, the proposed MAR algorithm improves the quality of clinical images affected by metal artifacts, and could be integrated in clinical setting.

摘要

金属伪影的降低仍然是计算机断层扫描中的一个挑战,因为它们会降低图像质量,进而可能影响医学诊断。本研究的目的是提出一种仅基于 CT 切片纠正金属伪影的新方法。该方法包括四个步骤。首先,使用基于熵的方法对原始 CT 切片中的金属植入物进行分割,生成金属图像。其次,使用三种变换(高斯滤波器、Parisotto 和 Schoenlieb 填充方法以及 Mumford-Shah 图像模型和 L0 梯度最小化方法(L0GM))获取先验图像。接下来,基于原始 CT 切片、先验图像和金属图像的投影,在称为归一化和去归一化的过程中,在受金属影响的轨迹中校正正弦图。最后,通过 FBP 和非局部均值(NLM)滤波获得重建图像。通过比较图像的五个图像质量指标和检查感兴趣区域(ROI)来评估算法的有效性。包括幻影数据和临床数据集。将所提出的方法与三种已建立的金属伪影减少(MAR)方法进行了比较。幻影和临床数据集的结果表明,伪影明显减少。结论是,IMIF-MAR 方法可以有效减少条纹状金属伪影,同时避免金属植入物周围出现新的伪影,同时保留解剖结构。考虑到临床和幻影研究,所提出的 MAR 算法可提高受金属伪影影响的临床图像质量,并可集成到临床环境中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验