Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America.
Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America.
PLoS One. 2020 May 14;15(5):e0232479. doi: 10.1371/journal.pone.0232479. eCollection 2020.
Single nucleotide polymorphisms (SNPs) are highly abundant, amendable to high-throughput genotyping, and useful for a number of breeding and genetics applications in crops. SNP frequencies vary depending on the species and populations under study, and therefore target SNPs need to be carefully selected to be informative for each application. While multiple SNP genotyping systems are available for rice (Oryza sativa L. and its relatives), they vary in their informativeness, cost, marker density, speed, flexibility, and data quality. In this study, we report the development and performance of the Cornell-IR LD Rice Array (C7AIR), a second-generation SNP array containing 7,098 markers that improves upon the previously released C6AIR. The C7AIR is designed to detect genome-wide polymorphisms within and between subpopulations of O. sativa, as well as O. glaberrima, O. rufipogon and O. nivara. The C7AIR combines top-performing SNPs from several previous rice arrays, including 4,007 SNPs from the C6AIR, 2,056 SNPs from the High Density Rice Array (HDRA), 910 SNPs from the 384-SNP GoldenGate sets, 189 SNPs from the 44K array selected to add information content for elite U.S. tropical japonica rice varieties, and 8 trait-specific SNPs. To demonstrate its utility, we carried out a genome-wide association analysis for plant height, employing the C7AIR across a diversity panel of 189 rice accessions and identified 20 QTLs contributing to plant height. The C7AIR SNP chip has so far been used for genotyping >10,000 rice samples. It successfully differentiates the five subpopulations of Oryza sativa, identifies introgressions from wild and exotic relatives, and is useful for quantitative trait loci (QTL) and association mapping in diverse materials. Moreover, data from the C7AIR provides valuable information that can be used to select informative and reliable SNP markers for conversion to lower-cost genotyping platforms for genomic selection and other downstream applications in breeding.
单核苷酸多态性 (SNP) 高度丰富,适合高通量基因分型,并且在作物的许多育种和遗传学应用中非常有用。SNP 频率取决于所研究的物种和群体,因此需要仔细选择目标 SNP,以使其对每种应用都具有信息性。虽然有多种用于水稻(Oryza sativa L.及其近缘种)的 SNP 基因分型系统,但它们在信息量、成本、标记密度、速度、灵活性和数据质量方面存在差异。在这项研究中,我们报告了第二代 SNP 阵列 Cornell-IR LD Rice Array (C7AIR) 的开发和性能,该阵列包含 7098 个标记,改进了之前发布的 C6AIR。C7AIR 旨在检测 O. sativa、O. glaberrima、O. rufipogon 和 O. nivara 亚种群内和亚种群之间的全基因组多态性。C7AIR 结合了来自几个先前的水稻阵列的表现最佳的 SNP,包括来自 C6AIR 的 4007 个 SNP、来自高密度水稻阵列 (HDRA) 的 2056 个 SNP、来自 384-SNP GoldenGate 集的 910 个 SNP、来自 44K 阵列的 189 个 SNP,用于为美国热带粳稻品种添加信息内容,以及 8 个与性状相关的 SNP。为了证明其效用,我们在一个由 189 个水稻品种组成的多样性面板上进行了全基因组关联分析,使用 C7AIR 对植物高度进行了分析,鉴定出 20 个与植物高度相关的 QTL。C7AIR SNP 芯片迄今为止已用于对超过 10000 个水稻样本进行基因分型。它成功地区分了 Oryza sativa 的五个亚种群,鉴定了来自野生和外来近缘种的渗入,并可用于不同材料的数量性状位点 (QTL) 和关联作图。此外,C7AIR 的数据提供了有价值的信息,可用于选择信息性和可靠的 SNP 标记,以便转换为基因组选择和育种中其他下游应用的低成本基因分型平台。