School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China.
PLoS One. 2020 May 14;15(5):e0233166. doi: 10.1371/journal.pone.0233166. eCollection 2020.
Retinal fundus photography provides a non-invasive approach for identifying early microcirculatory alterations of chronic diseases prior to the onset of overt clinical complications. Here, we developed neural network models to predict hypertension, hyperglycemia, dyslipidemia, and a range of risk factors from retinal fundus images obtained from a cross-sectional study of chronic diseases in rural areas of Xinxiang County, Henan, in central China. 1222 high-quality retinal images and over 50 measurements of anthropometry and biochemical parameters were generated from 625 subjects. The models in this study achieved an area under the ROC curve (AUC) of 0.880 in predicting hyperglycemia, of 0.766 in predicting hypertension, and of 0.703 in predicting dyslipidemia. In addition, these models can predict with AUC>0.7 several blood test erythrocyte parameters, including hematocrit (HCT), mean corpuscular hemoglobin concentration (MCHC), and a cluster of cardiovascular disease (CVD) risk factors. Taken together, deep learning approaches are feasible for predicting hypertension, dyslipidemia, diabetes, and risks of other chronic diseases.
眼底摄影为识别慢性病早期微小循环改变提供了一种非侵入性的方法,可在明显临床并发症出现之前进行。在这里,我们开发了神经网络模型,以从中国中部河南省新乡县农村地区进行的慢性病横断面研究中获得的眼底图像中预测高血压、高血糖、血脂异常和一系列危险因素。从 625 名受试者中生成了 1222 张高质量眼底图像和 50 多项人体测量和生化参数测量值。本研究中的模型在预测高血糖方面的 AUC 为 0.880,在预测高血压方面的 AUC 为 0.766,在预测血脂异常方面的 AUC 为 0.703。此外,这些模型可以预测 AUC>0.7 的几个血液测试红细胞参数,包括血细胞比容(HCT)、平均红细胞血红蛋白浓度(MCHC)和一组心血管疾病(CVD)危险因素。总之,深度学习方法可用于预测高血压、血脂异常、糖尿病和其他慢性病的风险。