Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea.
Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea.
Am J Ophthalmol. 2020 Sep;217:121-130. doi: 10.1016/j.ajo.2020.03.027. Epub 2020 Mar 25.
The prediction of atherosclerosis using retinal fundus images and deep learning has not been shown possible. The purpose of this study was to develop a deep learning model which predicted atherosclerosis by using retinal fundus images and to verify its clinical implications by conducting a retrospective cohort analysis.
Retrospective cohort study.
The database at the Health Promotion Center of Seoul National University Hospital (HPC-SNUH) was used. The deep learning model was trained using 15,408 images to predict carotid artery atherosclerosis, which was named the deep-learning funduscopic atherosclerosis score (DL-FAS). A retrospective cohort was constructed of participants 30-80 years old who had completed elective health examinations at HPC-SNUH. Using DL-FAS as the main exposure, participants were followed for the primary outcome of death due to CVD until Dec. 31, 2017.
For predicting carotid artery atherosclerosis among subjects, the model achieved an area under receiver operating curve (AUROC) and area under the precision-recall curve (AUPRC), accuracy, sensitivity, specificity, positive and negative predictive values of 0.713, 0.569, 0.583, 0.891, 0.404, 0.465, and 0.865 respectively. The cohort consisted of 32,227 participants, 78 cardiovascular disease (CVD) deaths, and 7.6-year median follow-up visits. Those with DL-FAS greater than 0.66 had an increased risk of CVD deaths compared to those with DL-FAS <0.33 (hazard ratio: 8.33; 95% confidence interval [CI], 3.16-24.7). Risk association was significant among intermediate and high Framingham risk score (FRS) subgroups. The DL-FAS improved the concordance by 0.0266 (95% CI, 0.0043-0.0489) over the FRS-only model. The relative integrated discrimination index was 20.45% and net reclassification index was 29.5%.
A deep learning model was developed which could predict atherosclerosis from retinal fundus images. The resulting DL-FAS was an independent predictor of CVD deaths when adjusted for FRS and added predictive value over FRS.
利用眼底图像和深度学习预测动脉粥样硬化尚未得到证实。本研究旨在开发一种通过眼底图像预测动脉粥样硬化的深度学习模型,并通过回顾性队列分析验证其临床意义。
回顾性队列研究。
使用首尔国立大学医院健康促进中心(HPC-SNUH)的数据库。使用 15408 张图像训练深度学习模型以预测颈动脉粥样硬化,该模型被命名为深度学习眼底动脉粥样硬化评分(DL-FAS)。构建了一个在 HPC-SNUH 完成择期健康检查的 30-80 岁参与者的回顾性队列。以 DL-FAS 作为主要暴露因素,随访参与者主要结局为心血管疾病(CVD)死亡,随访截止日期为 2017 年 12 月 31 日。
在预测受试者颈动脉粥样硬化方面,该模型的受试者工作特征曲线下面积(AUROC)、精准召回曲线下面积(AUPRC)、准确性、敏感性、特异性、阳性预测值和阴性预测值分别为 0.713、0.569、0.583、0.891、0.404、0.465 和 0.865。该队列包括 32227 名参与者,发生 78 例心血管疾病(CVD)死亡,中位随访时间为 7.6 年。与 DL-FAS<0.33 相比,DL-FAS>0.66 的参与者 CVD 死亡风险增加(风险比:8.33;95%置信区间 [CI]:3.16-24.7)。在中等和高弗雷明汉风险评分(FRS)亚组中,风险关联显著。与仅 FRS 模型相比,DL-FAS 使一致性提高了 0.0266(95%CI:0.0043-0.0489)。相对综合判别指数为 20.45%,净重新分类指数为 29.5%。
开发了一种能够从眼底图像预测动脉粥样硬化的深度学习模型。调整 FRS 后,生成的 DL-FAS 是 CVD 死亡的独立预测因子,并在 FRS 基础上增加了预测价值。