Fortuna Ismael, Perrone Gabriel C, Krug Monique S, Susin Eduarda, Belmonte Julio M, Thomas Gilberto L, Glazier James A, de Almeida Rita M C
Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana; Department of Physics, North Carolina State University, Raleigh, North Carolina.
Biophys J. 2020 Jun 2;118(11):2801-2815. doi: 10.1016/j.bpj.2020.04.024. Epub 2020 Apr 30.
Mesenchymal cell crawling is a critical process in normal development, in tissue function, and in many diseases. Quantitatively predictive numerical simulations of cell crawling thus have multiple scientific, medical, and technological applications. However, we still lack a low-computational-cost approach to simulate mesenchymal three-dimensional (3D) cell crawling. Here, we develop a computationally tractable 3D model (implemented as a simulation in the CompuCell3D simulation environment) of mesenchymal cells crawling on a two-dimensional substrate. The Fürth equation, the usual characterization of mean-squared displacement (MSD) curves for migrating cells, describes a motion in which, for increasing time intervals, cell movement transitions from a ballistic to a diffusive regime. Recent experiments have shown that for very short time intervals, cells exhibit an additional fast diffusive regime. Our simulations' MSD curves reproduce the three experimentally observed temporal regimes, with fast diffusion for short time intervals, slow diffusion for long time intervals, and intermediate time -interval-ballistic motion. The resulting parameterization of the trajectories for both experiments and simulations allows the definition of time- and length scales that translate between computational and laboratory units. Rescaling by these scales allows direct quantitative comparisons among MSD curves and between velocity autocorrelation functions from experiments and simulations. Although our simulations replicate experimentally observed spontaneous symmetry breaking, short-timescale diffusive motion, and spontaneous cell-motion reorientation, their computational cost is low, allowing their use in multiscale virtual-tissue simulations. Comparisons between experimental and simulated cell motion support the hypothesis that short-time actomyosin dynamics affects longer-time cell motility. The success of the base cell-migration simulation model suggests its future application in more complex situations, including chemotaxis, migration through complex 3D matrices, and collective cell motion.
间充质细胞爬行是正常发育、组织功能以及许多疾病中的一个关键过程。因此,对细胞爬行进行定量预测的数值模拟具有多种科学、医学和技术应用。然而,我们仍然缺乏一种计算成本低的方法来模拟间充质三维(3D)细胞爬行。在此,我们开发了一种计算上易于处理的3D模型(在CompuCell3D模拟环境中实现为模拟),用于模拟间充质细胞在二维基质上的爬行。菲尔特方程是迁移细胞平均平方位移(MSD)曲线的常用表征,它描述了一种运动,即随着时间间隔增加,细胞运动从弹道运动转变为扩散运动。最近的实验表明,在非常短的时间间隔内,细胞表现出额外的快速扩散运动状态。我们模拟的MSD曲线再现了实验观察到的三种时间状态,即短时间间隔内的快速扩散、长时间间隔内的缓慢扩散以及中间时间间隔的弹道运动。实验和模拟轨迹的结果参数化允许定义在计算单位和实验室单位之间转换的时间和长度尺度。通过这些尺度进行重新缩放,可以直接对MSD曲线以及实验和模拟的速度自相关函数进行定量比较。尽管我们的模拟复制了实验观察到的自发对称性破缺、短时间尺度的扩散运动和自发的细胞运动重新定向,但其计算成本很低,允许其用于多尺度虚拟组织模拟。实验和模拟细胞运动之间的比较支持了短时间肌动球蛋白动力学影响长时间细胞运动性的假设。基础细胞迁移模拟模型的成功表明其未来在更复杂情况下的应用,包括趋化性、通过复杂3D基质的迁移以及集体细胞运动。