Marconi Marco, Wabnik Krzysztof
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain.
Front Plant Sci. 2021 Oct 5;12:746183. doi: 10.3389/fpls.2021.746183. eCollection 2021.
Organ morphogenesis is the process of shape acquisition initiated with a small reservoir of undifferentiated cells. In plants, morphogenesis is a complex endeavor that comprises a large number of interacting elements, including mechanical stimuli, biochemical signaling, and genetic prerequisites. Because of the large body of data being produced by modern laboratories, solving this complexity requires the application of computational techniques and analyses. In the last two decades, computational models combined with wet-lab experiments have advanced our understanding of plant organ morphogenesis. Here, we provide a comprehensive review of the most important achievements in the field of computational plant morphodynamics. We present a brief history from the earliest attempts to describe plant forms using algorithmic pattern generation to the evolution of quantitative cell-based models fueled by increasing computational power. We then provide an overview of the most common types of "digital plant" paradigms, and demonstrate how models benefit from diverse techniques used to describe cell growth mechanics. Finally, we highlight the development of computational frameworks designed to resolve organ shape complexity through integration of mechanical, biochemical, and genetic cues into a quantitative standardized and user-friendly environment.
器官形态发生是一个从少量未分化细胞库开始的形状获取过程。在植物中,形态发生是一项复杂的工作,它包含大量相互作用的要素,包括机械刺激、生化信号传导和遗传前提条件。由于现代实验室产生了大量数据,解决这种复杂性需要应用计算技术和分析方法。在过去二十年中,计算模型与湿实验室实验相结合,增进了我们对植物器官形态发生的理解。在此,我们对计算植物形态动力学领域的最重要成就进行全面综述。我们呈现了一个简要的历史,从最早使用算法模式生成来描述植物形态的尝试,到随着计算能力增强而发展起来的基于细胞的定量模型。然后,我们概述了最常见的“数字植物”范式类型,并展示模型如何从用于描述细胞生长力学的各种技术中受益。最后,我们强调了计算框架的发展,这些框架旨在通过将机械、生化和遗传线索整合到一个定量、标准化且用户友好的环境中来解决器官形状复杂性问题。