Brown Courtney V, Boulet Lindsey M, Vermeulen Tyler D, Sands Scott A, Wilson Richard J A, Ayas Najib T, Floras John S, Foster Glen E
Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia - Okanagan, Kelowna, BC, Canada.
Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.
Front Neurosci. 2020 Apr 28;14:382. doi: 10.3389/fnins.2020.00382. eCollection 2020.
Components of the renin-angiotensin system (RAS) situated within the carotid body or central nervous system may promote hypoxia-induced chemoreceptor reflex sensitization or central sleep apnea (CSA). We determined if losartan, an angiotensin-II type-I receptor (ATR) antagonist, would attenuate chemoreceptor reflex sensitivity before or after 8 h of nocturnal hypoxia, and consequently CSA severity. In a double-blind, randomized, placebo-controlled, crossover protocol, 14 men (age: 25 ± 2 years; BMI: 24.6 ± 1.1 kg/m; means ± SEM) ingested 3 doses of either losartan (50 mg) or placebo every 8 h. Chemoreceptor reflex sensitivity was assessed during hypoxic and hyperoxic hypercapnic ventilatory response (HCVR) tests and during six-20s hypoxic apneas before and after 8 h of sleep in normobaric hypoxia (F O = 0.135). Loop gain was assessed from a ventilatory control model fitted to the ventilatory pattern of CSA recorded during polysomnography. Prior to nocturnal hypoxia, losartan had no effect on either the hyperoxic (losartan: 3.6 ± 1.1, placebo: 4.0 ± 0.6 l/min/mmHg; = 0.9) or hypoxic HCVR (losartan: 5.3 ± 1.4, placebo: 5.7 ± 0.68 l/min/mmHg; = 1.0). Likewise, losartan did not influence either the hyperoxic (losartan: 4.2 ± 1.3, placebo: 3.8 ± 1.1 l/min/mmHg; = 0.5) or hypoxic HCVR (losartan: 6.6 ± 1.8, placebo: 6.3 ± 1.5 l/min/mmHg; = 0.9) after nocturnal hypoxia. Cardiorespiratory responses to apnea and participants' apnea hypopnea indexes during placebo and losartan were similar (73 ± 15 vs. 75 ± 14 events/h; = 0.9). Loop gain, which correlated with CSA severity ( = 0.94, < 0.001), was similar between treatments. In summary, in young healthy men, hypoxia-induced CSA severity is strongly associated with loop gain, but the ATR does not modulate chemoreceptor reflex sensitivity before or after 8 h of nocturnal hypoxia.
位于颈动脉体或中枢神经系统内的肾素-血管紧张素系统(RAS)的组成部分可能会促进低氧诱导的化学感受器反射敏感性增加或中枢性睡眠呼吸暂停(CSA)。我们确定了氯沙坦(一种血管紧张素II 1型受体(ATR)拮抗剂)是否会在夜间低氧8小时之前或之后减弱化学感受器反射敏感性,进而减轻CSA的严重程度。在一项双盲、随机、安慰剂对照、交叉试验方案中,14名男性(年龄:25±2岁;体重指数:24.6±1.1kg/m²;均值±标准误)每8小时服用3剂氯沙坦(50mg)或安慰剂。在常压低氧(FIO₂ = 0.135)睡眠8小时之前和之后的低氧和高氧高碳酸通气反应(HCVR)测试期间以及6次20秒的低氧呼吸暂停期间评估化学感受器反射敏感性。通过拟合多导睡眠图记录的CSA通气模式的通气控制模型评估环路增益。在夜间低氧之前,氯沙坦对高氧(氯沙坦:3.6±1.1,安慰剂:4.0±0.6l/min/mmHg;P = 0.9)或低氧HCVR(氯沙坦:5.3±1.4,安慰剂:5.7±0.68l/min/mmHg;P = 1.0)均无影响。同样,夜间低氧后氯沙坦对高氧(氯沙坦:4.2±1.3,安慰剂:3.8±1.1l/min/mmHg;P = 0.5)或低氧HCVR(氯沙坦:6.6±1.8,安慰剂:6.3±1.5l/min/mmHg;P = 0.9)也没有影响。安慰剂和氯沙坦治疗期间对呼吸暂停的心肺反应以及参与者的呼吸暂停低通气指数相似(73±15次/小时对75±14次/小时;P = 0.9)。与CSA严重程度相关(r = 0.94,P < 0.001)的环路增益在各治疗组之间相似。总之,在年轻健康男性中,低氧诱导的CSA严重程度与环路增益密切相关,但ATR在夜间低氧8小时之前或之后均不调节化学感受器反射敏感性。