Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232.
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235.
Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):12394-12401. doi: 10.1073/pnas.1922211117. Epub 2020 May 15.
The bacterial pathogen is capable of infecting a broad spectrum of host tissues, in part due to flexibility of metabolic programs. , like all organisms, requires essential biosynthetic intermediates to synthesize macromolecules. We therefore sought to determine the metabolic pathways contributing to synthesis of essential precursors during invasive infection. We focused specifically on staphylococcal infection of bone, one of the most common sites of invasive infection and a unique environment characterized by dynamic substrate accessibility, infection-induced hypoxia, and a metabolic profile skewed toward aerobic glycolysis. Using a murine model of osteomyelitis, we examined survival of mutants deficient in central metabolic pathways, including glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, and amino acid synthesis/catabolism. Despite the high glycolytic demand of skeletal cells, we discovered that requires glycolysis for survival in bone. Furthermore, the TCA cycle is dispensable for survival during osteomyelitis, and instead has a critical need for anaplerosis. Bacterial synthesis of aspartate in particular is absolutely essential for staphylococcal survival in bone, despite the presence of an aspartate transporter, which we identified as GltT and confirmed biochemically. This dependence on endogenous aspartate synthesis derives from the presence of excess glutamate in infected tissue, which inhibits aspartate acquisition by Together, these data elucidate the metabolic pathways required for staphylococcal infection within bone and demonstrate that the host nutrient milieu can determine essentiality of bacterial nutrient biosynthesis pathways despite the presence of dedicated transporters.
细菌病原体能够感染广泛的宿主组织,部分原因是其代谢程序具有灵活性。与所有生物体一样, 需要必需的生物合成中间体来合成大分子。因此,我们试图确定在侵袭性 感染过程中合成必需前体的代谢途径。我们特别关注金黄色葡萄球菌对骨骼的感染,骨骼是侵袭性 感染最常见的部位之一,是一种独特的环境,其特点是动态的底物可及性、感染诱导的缺氧以及偏向有氧糖酵解的代谢特征。我们使用骨髓炎的小鼠模型,研究了中央代谢途径(包括糖酵解、糖异生、三羧酸 (TCA) 循环和氨基酸合成/分解代谢)缺失的 突变体的存活情况。尽管骨骼细胞的糖酵解需求很高,但我们发现 依赖糖酵解才能在骨骼中存活。此外,TCA 循环对于骨髓炎期间的存活不是必需的, 而是需要关键的补料作用。特别是细菌合成天冬氨酸对于金黄色葡萄球菌在骨骼中的存活是绝对必需的,尽管存在天冬氨酸转运蛋白,我们将其鉴定为 GltT,并通过生化方法证实了这一点。这种对内源性天冬氨酸合成的依赖源于感染组织中存在过量的谷氨酸,这会抑制 通过摄取天冬氨酸。这些数据阐明了金黄色葡萄球菌在骨骼内感染所需的代谢途径,并表明尽管存在专用转运蛋白,但宿主营养环境可以决定细菌营养生物合成途径的必需性。