Suppr超能文献

肾癌骨转移患者预测模型的建立:一项基于监测、流行病学和最终结果(SEER)数据库的研究

Establishment of predictive model for patients with kidney cancer bone metastasis: a study based on SEER database.

作者信息

Hua Kun-Chi, Hu Yong-Cheng

机构信息

Department of Orthopedic Oncology, Tianjin Hospital, Tianjin 300211, China.

出版信息

Transl Androl Urol. 2020 Apr;9(2):523-543. doi: 10.21037/tau.2020.01.24.

Abstract

BACKGROUND

Bone is a common metastatic tissue of kidney cancer. Accurate prediction of the prognosis of patients with kidney cancer bone metastasis (KCBM) can help doctors and patients choose a further appropriate treatment.

METHODS

During the period from January 1, 2010 to December 31, 2015, screening patients with kidney cancer diagnosed with bone metastases from the SEER database. Summary of demographic, pathology, number of other metastatic organs, and treatment for KCBM patients. All prognostic factors were plotted for Kaplan-Meier survival curves and log-rank test. Prognostic factors of P<0.001 in the log-rank test were chosen and used to establish nomograms of OS and KCSS. We used C-index, ROC curve, and calibration plot to test the prediction accuracy of two nomograms.

RESULTS

A total of 4,234 KCBM patients were included in the study, and patients were diagnosed between January 1, 2010 and December 31, 2015. The model establishment group included 2,966 KCBM patients and the validation group included 1,268 KCBM patients. We have established nomograms for OS and KCSS respectively. These two nomograms included factors such as age, marital status, insurance status, histological type, grade, T stage, N stage, number of extra-bone metastatic organs, surgery, RT, and CT. The C-index of nomograms of OS and KCSS was 0.733 and 0.752, respectively. In all ROC curves, all AUC values were greater than 0.7, proving that the nomograms of both OS and KCSS have achieved medium prediction accuracy. The calibration plots of the model establishment group and the validation group showed good consistency between the predicted nomograms of OS and KCSS.

CONCLUSIONS

In this study, nomograms of OS and KCSS were established based on the published data of KCBM patients in the SEER database, and the model was validated internally and externally. The prediction accuracy of nomograms of OS and KCSS achieved satisfactory results. At present, this model has the ability to predict the prognosis of KCBM patients and can be used in clinical work.

摘要

背景

骨是肾癌常见的转移组织。准确预测肾癌骨转移(KCBM)患者的预后有助于医生和患者选择进一步合适的治疗方案。

方法

在2010年1月1日至2015年12月31日期间,从SEER数据库中筛选出诊断为骨转移的肾癌患者。总结KCBM患者的人口统计学、病理学、其他转移器官数量及治疗情况。对所有预后因素绘制Kaplan-Meier生存曲线并进行对数秩检验。选择对数秩检验中P<0.001的预后因素用于建立总生存期(OS)和无进展生存期(KCSS)的列线图。我们使用C指数、ROC曲线和校准图来检验两个列线图的预测准确性。

结果

本研究共纳入4234例KCBM患者,患者于2010年1月1日至2015年12月31日期间确诊。模型建立组包括2966例KCBM患者,验证组包括1268例KCBM患者。我们分别建立了OS和KCSS的列线图。这两个列线图包括年龄、婚姻状况、保险状况、组织学类型、分级、T分期、N分期、骨外转移器官数量、手术、放疗和化疗等因素。OS和KCSS列线图的C指数分别为0.733和0.752。在所有ROC曲线中,所有AUC值均大于0.7,证明OS和KCSS列线图均达到中等预测准确性。模型建立组和验证组的校准图显示OS和KCSS预测列线图之间具有良好的一致性。

结论

在本研究中,基于SEER数据库中KCBM患者的公开数据建立了OS和KCSS的列线图,并进行了内部和外部验证。OS和KCSS列线图的预测准确性取得了满意的结果。目前,该模型有能力预测KCBM患者的预后,可用于临床工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e57/7214962/3b85408ec189/tau-09-02-523-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验