Suppr超能文献

低收入和中等收入国家的孕产妇和新生儿数据收集系统:范围审查方案

Maternal and neonatal data collection systems in low- and middle-income countries: scoping review protocol.

作者信息

Berrueta Mabel, Bardach Ariel, Ciaponni Agustin, Xiong Xu, Stergachis Andy, Zaraa Sabra, Buekens Pierre

机构信息

Department of Mother and Child Health Research, Institute for Clinical Effectiveness and Health Policy (IECS), Buenos Aires, C1414CPV, Argentina.

Argentine Cochrane Center, Institute for Clinical Effectiveness and Health Policy (IECS), Buenos Aires, C1414CPV, Argentina.

出版信息

Gates Open Res. 2020 Feb 5;4:18. doi: 10.12688/gatesopenres.13106.1. eCollection 2020.

Abstract

Pregnant women and neonates represent one of the most vulnerable groups, especially in low- and middle-income countries (LMICs). A recent analysis reported that most vaccine pharmacovigilance systems in LMICs consist of spontaneous (passive) adverse event reporting. Thus, LMICs need effective active surveillance approaches, such as pregnancy registries. We intend to identify currently active maternal and neonatal data collection systems in LMICs, with the potential to inform active safety electronic surveillance for novel vaccines using standardized definitions. A scoping review will be conducted based on established methodology. Multiple databases of indexed and grey literature will be searched with a specific focus on existing electronic and paper-electronic systems in LMICs that collect continuous, prospective, and individual-level data from antenatal care, delivery, neonatal care (up to 28 days), and postpartum (up to 42 days) at the facility and community level, at the national and district level, and at large hospitals. Also, experts will be contacted to identify unpublished information on relevant data collection systems. General and specific descriptions of Health Information Systems (HIS) extracted from the different sources will be combined and duplicated HIS will be removed, producing a list of unique statements. We will present a final list of Maternal, Newborn, and Child Health systems considered flexible enough to be updated with necessary improvements to detect, assess and respond to safety concerns during the introduction of vaccines and other maternal health interventions. Selected experts will participate in an in-person consultation meeting to select up to three systems to be further explored in situ. Results and knowledge gaps will be synthesized after expert consultation.

摘要

孕妇和新生儿是最脆弱的群体之一,在低收入和中等收入国家(LMICs)尤其如此。最近的一项分析报告称,LMICs的大多数疫苗药物警戒系统都包括自发(被动)不良事件报告。因此,LMICs需要有效的主动监测方法,如妊娠登记。我们打算确定LMICs目前活跃的孕产妇和新生儿数据收集系统,这些系统有可能为使用标准化定义的新型疫苗的主动安全电子监测提供信息。将根据既定方法进行范围审查。将搜索多个索引和灰色文献数据库,特别关注LMICs中现有的电子和纸质-电子系统,这些系统在设施和社区层面、国家和地区层面以及大型医院收集来自产前护理、分娩、新生儿护理(至28天)和产后(至42天)的连续、前瞻性和个体层面的数据。此外,还将联系专家以识别有关数据收集系统的未发表信息。将合并从不同来源提取的卫生信息系统(HIS)的一般和具体描述,并删除重复的HIS,生成一份独特声明列表。我们将列出一份孕产妇、新生儿和儿童健康系统的最终清单,这些系统被认为足够灵活,可以进行必要的改进以更新,以便在引入疫苗和其他孕产妇健康干预措施期间检测、评估和应对安全问题。选定的专家将参加一次面对面的咨询会议,以选择最多三个系统进行实地进一步探索。专家咨询后将综合结果和知识差距。

相似文献

8
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

本文引用的文献

9
Scoping studies: advancing the methodology.范围研究:方法学的推进。
Implement Sci. 2010 Sep 20;5:69. doi: 10.1186/1748-5908-5-69.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验