Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, NH, United States; Norris Cotton Cancer Center, Lebanon, NH, United States.
Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
Methods Cell Biol. 2020;158:91-116. doi: 10.1016/bs.mcb.2020.01.004. Epub 2020 Feb 24.
During mitosis, spindle microtubules dynamically attach to and detach from kinetochores in a precise and regulated fashion. To ensure mitotic fidelity, kinetochore-microtubule (k-MT) attachments must be stable enough to satisfy the spindle assembly checkpoint (SAC), but sufficiently unstable to facilitate the correction of maloriented attachments. Different methods are available to assess k-MT stability in both live and fixed cells, but a comparative survey of these methods has not yet been reported. Here, we evaluate several quantitative and semiquantitative methods for determining k-MT stability and apply each technique to illustrate changes in spindle microtubule dynamics upon perturbation with physiologically relevant concentrations of microtubule stabilizing (Taxol) and destabilizing (UMK57 and nocodazole) compounds. We discuss the utility of each technique for defining specific features of spindle microtubule dynamics and k-MT attachment stability.
在有丝分裂过程中,纺锤体微管以精确和受调控的方式动态地与动粒结合和脱离。为了确保有丝分裂的保真度,动粒-微管(k-MT)附着必须足够稳定以满足纺锤体组装检查点(SAC),但又要有足够的不稳定性来促进纠正错误定向的附着。有不同的方法可用于评估活细胞和固定细胞中的 k-MT 稳定性,但这些方法的比较调查尚未报道。在这里,我们评估了几种用于确定 k-MT 稳定性的定量和半定量方法,并应用每种技术来说明在受到生理相关浓度的微管稳定(紫杉醇)和不稳定(UMK57 和诺考达唑)化合物的干扰时,纺锤体微管动力学的变化。我们讨论了每种技术在定义纺锤体微管动力学和 k-MT 附着稳定性的特定特征方面的用途。