Laakso Thomas A, Sperling Erik A, Johnston David T, Knoll Andrew H
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 20138;
Department of Geological Sciences, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):11961-11967. doi: 10.1073/pnas.1916738117. Epub 2020 May 18.
The Ediacaran Period (635 to 541 Ma) marks the global transition to a more productive biosphere, evidenced by increased availability of food and oxidants, the appearance of macroscopic animals, significant populations of eukaryotic phytoplankton, and the onset of massive phosphorite deposition. We propose this entire suite of changes results from an increase in the size of the deep-water marine phosphorus reservoir, associated with rising sulfate concentrations and increased remineralization of organic P by sulfate-reducing bacteria. Simple mass balance calculations, constrained by modern anoxic basins, suggest that deep-water phosphate concentrations may have increased by an order of magnitude without any increase in the rate of P input from the continents. Strikingly, despite a major shift in phosphorite deposition, a new compilation of the phosphorus content of Neoproterozoic and early Paleozoic shows little secular change in median values, supporting the view that changes in remineralization and not erosional P fluxes were the principal drivers of observed shifts in phosphorite accumulation. The trigger for these changes may have been transient Neoproterozoic weathering events whose biogeochemical consequences were sustained by a set of positive feedbacks, mediated by the oxygen and sulfur cycles, that led to permanent state change in biogeochemical cycling, primary production, and biological diversity by the end of the Ediacaran Period.
埃迪卡拉纪(6.35亿至5.41亿年前)标志着全球向生产力更高的生物圈过渡,这一过渡的证据包括食物和氧化剂的可利用性增加、宏观动物的出现、大量真核浮游植物的存在以及大规模磷矿沉积的开始。我们认为,这一系列变化是由于深水海洋磷库规模的增加,这与硫酸盐浓度上升以及硫酸盐还原细菌对有机磷的再矿化增加有关。受现代缺氧盆地限制的简单质量平衡计算表明,即使大陆输入磷的速率没有增加,深水磷酸盐浓度可能也已经增加了一个数量级。引人注目的是,尽管磷矿沉积发生了重大变化,但一份新的元古宙和早古生代磷含量汇编显示,中值几乎没有长期变化,这支持了以下观点:再矿化的变化而非侵蚀性磷通量是观察到的磷矿积累变化的主要驱动因素。这些变化的触发因素可能是新元古代的短暂风化事件,其生物地球化学后果通过由氧和硫循环介导的一系列正反馈得以持续,这些正反馈在埃迪卡拉纪末期导致了生物地球化学循环、初级生产和生物多样性的永久状态变化。