Butler C J, Yoshida M, Hanaguri T, Iwasa Y
RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
Nat Commun. 2020 May 18;11(1):2477. doi: 10.1038/s41467-020-16132-9.
If a material with an odd number of electrons per unit-cell is insulating, Mott localisation may be invoked as an explanation. This is widely accepted for the layered compound 1T-TaS, which has a low-temperature insulating phase comprising charge order clusters with 13 unpaired orbitals each. But if the stacking of layers doubles the unit-cell to include an even number of orbitals, the nature of the insulating state is ambiguous. Here, scanning tunnelling microscopy reveals two distinct terminations of the charge order in 1T-TaS, the sign of such a double-layer stacking pattern. However, spectroscopy at both terminations allows us to disentangle unit-cell doubling effects and determine that Mott localisation alone can drive gap formation. We also observe the collapse of Mottness at an extrinsically re-stacked termination, demonstrating that the microscopic mechanism of insulator-metal transitions lies in degrees of freedom of inter-layer stacking.
如果每晶胞具有奇数个电子的材料是绝缘体,则可援引莫特局域化来进行解释。对于层状化合物1T-TaS而言,这一观点已被广泛接受,该化合物具有低温绝缘相,其包含电荷有序簇,每个电荷有序簇具有13个未配对轨道。但是,如果层的堆叠使晶胞翻倍,从而包含偶数个轨道,那么绝缘态的性质就不明确了。在这里,扫描隧道显微镜揭示了1T-TaS中电荷有序的两种不同终止情况,这是这种双层堆叠模式的特征。然而,在两种终止情况下进行的光谱分析使我们能够区分晶胞翻倍效应,并确定仅莫特局域化就能驱动能隙形成。我们还观察到在一个外部重新堆叠的终止处莫特特性的消失,这表明绝缘体-金属转变的微观机制在于层间堆叠的自由度。