Suppr超能文献

优化抗病毒疫苗反应:来自非专业人士的见解

Optimizing Anti-Viral Vaccine Responses: Input from a Non-Specialist.

作者信息

Serwer Philip

机构信息

Department of Biochemistry and Structural Biology, The University of Texas Health Center, San Antonio, TX 78229-3900, USA.

出版信息

Antibiotics (Basel). 2020 May 15;9(5):255. doi: 10.3390/antibiotics9050255.

Abstract

Recently, the research community has had a real-world look at reasons for improving vaccine responses to emerging RNA viruses. Here, a vaccine non-specialist suggests how this might be done. I propose two alternative options and compare the primary alternative option with current practice. The basis of comparison is feasibility in achieving what we need: a safe, mass-produced, emerging virus-targeted vaccine on 2-4 week notice. The primary option is the following. (1) Start with a platform based on live viruses that infect bacteria, but not humans (bacteriophages, or phages). (2) Isolate phages (to be called pathogen homologs) that resemble and provide antigenic context for membrane-covered, pathogenic RNA viruses; coronavirus-phage homologs will probably be found if the search is correctly done. (3) Upon isolating a viral pathogen, evolve its phage homolog to bind antibodies neutralizing for the viral pathogen. Vaccinate with the evolved phage homolog by generating a local, non-hazardous infection with the phage host and then curing the infection by propagating the phage in the artificially infecting bacterial host. I discuss how this alternative option has the potential to provide what is needed after appropriate platforms are built.

摘要

最近,研究界切实考察了提高对新出现的RNA病毒疫苗反应的原因。在此,一位非疫苗领域的专家提出了实现这一目标的方法。我提出了两种替代方案,并将主要替代方案与当前做法进行了比较。比较的基础是实现我们所需目标的可行性:在接到通知后的2至4周内,生产出一种安全、可大规模生产、针对新出现病毒的疫苗。主要方案如下:(1)从基于感染细菌但不感染人类的活病毒(噬菌体)的平台开始。(2)分离出与包膜致病性RNA病毒相似并提供抗原背景的噬菌体(称为病原体同源物);如果搜索方法正确,可能会找到冠状病毒噬菌体同源物。(3)分离出病毒病原体后,使其噬菌体同源物进化,以结合能中和该病毒病原体的抗体。通过用噬菌体宿主引发局部无害感染,然后在人工感染的细菌宿主中繁殖噬菌体来治愈感染,从而用进化后的噬菌体同源物进行疫苗接种。我讨论了在构建合适的平台后,这种替代方案如何有可能提供所需的东西。

相似文献

3
Bacteriophage-Based Bioanalysis.基于噬菌体的生物分析。
Annu Rev Anal Chem (Palo Alto Calif). 2024 Jul;17(1):393-410. doi: 10.1146/annurev-anchem-071323-084224.
5
Computational approaches to predict bacteriophage-host relationships.预测噬菌体-宿主关系的计算方法。
FEMS Microbiol Rev. 2016 Mar;40(2):258-72. doi: 10.1093/femsre/fuv048. Epub 2015 Dec 9.
10
More Is Better: Selecting for Broad Host Range Bacteriophages.越多越好:筛选具有广泛宿主范围的噬菌体。
Front Microbiol. 2016 Sep 8;7:1352. doi: 10.3389/fmicb.2016.01352. eCollection 2016.

引用本文的文献

1
Basics for Improved Use of Phages for Therapy.改善噬菌体治疗应用的基础
Antibiotics (Basel). 2021 Jun 16;10(6):723. doi: 10.3390/antibiotics10060723.
2
Phage Diversity for Research and Application.用于研究和应用的噬菌体多样性
Antibiotics (Basel). 2020 Oct 26;9(11):734. doi: 10.3390/antibiotics9110734.

本文引用的文献

1
Bacteriophage Therapy: Developments and Directions.噬菌体疗法:进展与方向
Antibiotics (Basel). 2020 Mar 24;9(3):135. doi: 10.3390/antibiotics9030135.
5
A review of Dengvaxia®: development to deployment.登革热疫苗(Dengvaxia®):从研发到应用的综述。
Hum Vaccin Immunother. 2019;15(10):2295-2314. doi: 10.1080/21645515.2019.1658503. Epub 2019 Oct 7.
6
A child of Apollo.
Science. 2019 Jul 19;365(6450):203. doi: 10.1126/science.aay6770.
7
Restoring logic and data to phage-cures for infectious disease.恢复噬菌体疗法在传染病治疗中的逻辑与数据。
AIMS Microbiol. 2017 Aug 15;3(4):706-712. doi: 10.3934/microbiol.2017.4.706. eCollection 2017.
8
Structural Vaccinology for Viral Vaccine Design.用于病毒疫苗设计的结构疫苗学
Front Microbiol. 2019 Apr 16;10:738. doi: 10.3389/fmicb.2019.00738. eCollection 2019.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验