Suppr超能文献

创新策略选择助力高性能柔性压电传感器。

Innovation Strategy Selection Facilitates High-Performance Flexible Piezoelectric Sensors.

作者信息

Duan Shengshun, Wu Jun, Xia Jun, Lei Wei

机构信息

Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.

出版信息

Sensors (Basel). 2020 May 15;20(10):2820. doi: 10.3390/s20102820.

Abstract

Piezoelectric sensors with high performance and low-to-zero power consumption meet the growing demand in the flexible microelectronic system with small size and low power consumption, which are promising in robotics and prosthetics, wearable devices and electronic skin. In this review, the development process, application scenarios and typical cases are discussed. In addition, several strategies to improve the performance of piezoelectric sensors are summed up: (1) material innovation: from piezoelectric semiconductor materials, inorganic piezoceramic materials, organic piezoelectric polymer, nanocomposite materials, to emerging and promising molecular ferroelectric materials. (2) designing microstructures on the surface of the piezoelectric materials to enlarge the contact area of piezoelectric materials under the applied force. (3) addition of dopants such as chemical elements and graphene in conventional piezoelectric materials. (4) developing piezoelectric transistors based on piezotronic effect. In addition, the principle, advantages, disadvantages and challenges of every strategy are discussed. Apart from that, the prospects and directions of piezoelectric sensors are predicted. In the future, the electronic sensors need to be embedded in the microelectronic systems to play the full part. Therefore, a strategy based on peripheral circuits to improve the performance of piezoelectric sensors is proposed in the final part of this review.

摘要

高性能且低功耗至零功耗的压电传感器满足了对小型化、低功耗的柔性微电子系统日益增长的需求,这类系统在机器人技术与假肢、可穿戴设备及电子皮肤领域颇具前景。在本综述中,我们讨论了压电传感器的发展历程、应用场景及典型案例。此外,总结了几种提高压电传感器性能的策略:(1)材料创新:从压电半导体材料、无机压电陶瓷材料、有机压电聚合物、纳米复合材料,到新兴且有前景的分子铁电材料。(2)在压电材料表面设计微结构,以扩大施加力作用下压电材料的接触面积。(3)在传统压电材料中添加化学元素和石墨烯等掺杂剂。(4)基于压电子效应开发压电晶体管。此外,还讨论了每种策略的原理、优缺点及挑战。除此之外,对压电传感器的前景和发展方向进行了预测。未来,电子传感器需嵌入微电子系统以充分发挥作用。因此,在本综述的最后部分提出了一种基于外围电路提高压电传感器性能的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c8f/7284718/e79fb9faa5c6/sensors-20-02820-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验