Suppr超能文献

新冠疫情特别专栏:新冠病毒(COVID-19病原体)检测技术背后的原理

COVID-19 Special Column: Principles Behind the Technology for Detecting SARS-CoV-2, the Cause of COVID-19.

作者信息

Ching Lauren, Chang Sandra P, Nerurkar Vivek R

机构信息

Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI (LLC, SPC, VRN).

Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawai'i at Manoa, Honolulu, HI (LLC, SPC, VRN).

出版信息

Hawaii J Health Soc Welf. 2020 May 1;79(5):136-142.

Abstract

Nationwide shortages of tests that detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and diagnose coronavirus disease 2019 (COVID-19) have led the US Food and Drug Administration (FDA) to significantly relax regulations regarding COVID-19 diagnostic testing. To date the FDA has given emergency use authorization (EUA) to 48 COVID-19 in vitro diagnostic tests and 21 high complexity molecular-based laboratory developed tests, as well as implemented policies that give broad authority to clinical laboratories and commercial manufacturers in the development, distribution, and use of COVID-19 diagnostic tests. Currently, there are 2 types of diagnostic tests available for the detection of SARS-CoV-2: (1) molecular and (2) serological tests. Molecular detection of nucleic acid (RNA or DNA) sequences relating to the suspected pathogen is indicative of an active infection with the suspected pathogen. Serological tests detect antibodies against the suspected pathogen, which are produced by an individual's immune system. A positive serological test result indicates recent exposure to the suspected pathogen but cannot be used to determine if the individual is actively infected with the pathogen or immune to reinfection. In this article, the SARS-CoV-2 diagnostic tests currently approved by the FDA under EUA are reviewed, and other diagnostic tests that researchers are developing to detect SARS-CoV-2 infection are discussed.

摘要

用于检测严重急性呼吸综合征冠状病毒2(SARS-CoV-2)和诊断2019冠状病毒病(COVID-19)的检测试剂在全国范围内出现短缺,这导致美国食品药品监督管理局(FDA)大幅放宽了关于COVID-19诊断检测的监管规定。截至目前,FDA已对48种COVID-19体外诊断检测试剂和21种高度复杂的基于分子的实验室自行研发检测方法给予了紧急使用授权(EUA),并实施了相关政策,赋予临床实验室和商业制造商在COVID-19诊断检测试剂的开发、分发和使用方面广泛的权力。目前,有两种类型的诊断检测方法可用于检测SARS-CoV-2:(1)分子检测法和(2)血清学检测法。对与疑似病原体相关的核酸(RNA或DNA)序列进行分子检测,表明个体感染了疑似病原体。血清学检测法检测针对疑似病原体的抗体,这些抗体由个体的免疫系统产生。血清学检测结果呈阳性表明个体近期接触过疑似病原体,但不能用于确定该个体是否正在感染该病原体或对再次感染具有免疫力。在本文中,将对目前FDA根据EUA批准的SARS-CoV-2诊断检测试剂进行综述,并讨论研究人员正在开发的其他用于检测SARS-CoV-2感染的诊断检测方法。

相似文献

10
The Role of Antibody Testing for SARS-CoV-2: Is There One?
J Clin Microbiol. 2020 Jul 23;58(8). doi: 10.1128/JCM.00797-20.

引用本文的文献

1
From Detection to Protection: Antibodies and Their Crucial Role in Diagnosing and Combatting SARS-CoV-2.
Vaccines (Basel). 2024 Apr 25;12(5):459. doi: 10.3390/vaccines12050459.
3
The SARS-CoV-2 Antibodies, Their Diagnostic Utility, and Their Potential for Vaccine Development.
Vaccines (Basel). 2022 Aug 18;10(8):1346. doi: 10.3390/vaccines10081346.
5
Detection of COVID-19 findings by the local interpretable model-agnostic explanations method of types-based activations extracted from CNNs.
Biomed Signal Process Control. 2022 Jan;71:103128. doi: 10.1016/j.bspc.2021.103128. Epub 2021 Sep 2.
6
COVID-19 Diagnostic Strategies Part II: Protein-Based Technologies.
Bioengineering (Basel). 2021 Apr 28;8(5):54. doi: 10.3390/bioengineering8050054.
8
SARS-CoV-2 Direct Detection Without RNA Isolation With Loop-Mediated Isothermal Amplification (LAMP) and CRISPR-Cas12.
Front Med (Lausanne). 2021 Feb 17;8:627679. doi: 10.3389/fmed.2021.627679. eCollection 2021.
10
Chest CT in COVID-19: What the Radiologist Needs to Know.
Radiographics. 2020 Nov-Dec;40(7):1848-1865. doi: 10.1148/rg.2020200159. Epub 2020 Oct 23.

本文引用的文献

2
Structural basis of receptor recognition by SARS-CoV-2.
Nature. 2020 May;581(7807):221-224. doi: 10.1038/s41586-020-2179-y. Epub 2020 Mar 30.
3
Antibody Responses to SARS-CoV-2 in Patients With Novel Coronavirus Disease 2019.
Clin Infect Dis. 2020 Nov 19;71(16):2027-2034. doi: 10.1093/cid/ciaa344.
6
Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An analysis.
EXCLI J. 2020 Mar 18;19:410-417. doi: 10.17179/excli2020-1167. eCollection 2020.
7
Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1.
N Engl J Med. 2020 Apr 16;382(16):1564-1567. doi: 10.1056/NEJMc2004973. Epub 2020 Mar 17.
8
Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2).
Science. 2020 May 1;368(6490):489-493. doi: 10.1126/science.abb3221. Epub 2020 Mar 16.
9
The convalescent sera option for containing COVID-19.
J Clin Invest. 2020 Apr 1;130(4):1545-1548. doi: 10.1172/JCI138003.
10
The establishment of reference sequence for SARS-CoV-2 and variation analysis.
J Med Virol. 2020 Jun;92(6):667-674. doi: 10.1002/jmv.25762. Epub 2020 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验