Suppr超能文献

一种用于对活果蝇收缩性幼虫肌肉中的细胞核进行成像的最小约束装置揭示了新的细胞核力学动态。

A minimal constraint device for imaging nuclei in live Drosophila contractile larval muscles reveals novel nuclear mechanical dynamics.

作者信息

Lorber Dana, Rotkopf Ron, Volk Talila

机构信息

Department of Molecular Genetics, Weizmann Institute of Science, Israel.

出版信息

Lab Chip. 2020 Jun 21;20(12):2100-2112. doi: 10.1039/d0lc00214c. Epub 2020 May 20.

Abstract

Muscle contractions produce reiterated cytoplasmic mechanical variations, which potentially influence nuclear mechanotransduction, however information regarding the dynamics of muscle nuclei (myonuclei) in the course of muscle contraction is still missing. Towards that end, a minimal constraint device was designed in which intact live Drosophila larva is imaged, while its muscles still contract. The device is placed under spinning disc confocal microscope enabling imaging of fluorescently labeled sarcomeres and nuclei during muscle contraction, without any external stimulation. As a proof of principle we studied myonuclei dynamics in wild-type, as well as in Nesprin/klar mutant larvae lacking proper nuclear-cytoskeletal connections. Myonuclei in control larvae exhibited comparable dynamics in the course of multiple contractile events, independent of their position along the muscle fiber. In contrast, myonuclei of mutant larvae displayed differential dynamics at distinct positions along individual myofibers. Moreover, we identified a linear link between myonuclear volume and its acceleration values during muscle contraction which, in Nesprin/klar mutants exhibited an opposite tendency relative to control. Estimation of the drag force applied on individual myonuclei revealed that force fluctuations in time, but not the average force, differed significantly between control and Nesprin/klar mutant, and were considerably higher in the mutant myonuclei. Taken together these results imply significant alterations in the mechanical dynamics of individual myonuclei in the Nesprin/klar myonuclei relative to control. Such differences provide novel mechanical insight into Nesprin function in contractile muscles, and might reveal the mechanical basis underlying Nesprin-related human diseases.

摘要

肌肉收缩会产生反复的细胞质机械变化,这可能会影响核机械转导,然而,关于肌肉收缩过程中肌肉细胞核(肌核)动态变化的信息仍然缺失。为此,设计了一种最小约束装置,在该装置中对完整的活果蝇幼虫进行成像,同时其肌肉仍在收缩。该装置放置在转盘共聚焦显微镜下,能够在肌肉收缩过程中对荧光标记的肌节和细胞核进行成像,无需任何外部刺激。作为原理验证,我们研究了野生型以及缺乏适当核-细胞骨架连接的Nesprin/klar突变体幼虫中的肌核动态变化。对照幼虫中的肌核在多次收缩事件过程中表现出可比的动态变化,与它们在肌纤维上的位置无关。相比之下,突变体幼虫的肌核在单个肌纤维上的不同位置表现出不同的动态变化。此外,我们确定了肌肉收缩过程中肌核体积与其加速度值之间的线性联系,在Nesprin/klar突变体中,这种联系相对于对照呈现出相反的趋势。对施加在单个肌核上的阻力的估计表明,对照和Nesprin/klar突变体之间,力随时间的波动而非平均力存在显著差异,并且突变体肌核中的力波动要高得多。综合这些结果表明,相对于对照,Nesprin/klar肌核中单个肌核的机械动力学发生了显著改变。这些差异为Nesprin在收缩性肌肉中的功能提供了新的力学见解,并可能揭示Nesprin相关人类疾病的力学基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验