Piano Ilaria, D'Antongiovanni Vanessa, Novelli Elena, Biagioni Martina, Dei Cas Michele, Paroni Rita Clara, Ghidoni Riccardo, Strettoi Enrica, Gargini Claudia
Department of Pharmacy, University of Pisa, Pisa, Italy.
Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
Front Neurosci. 2020 May 6;14:372. doi: 10.3389/fnins.2020.00372. eCollection 2020.
Tvrm4 mice, a model of autosomal dominant retinitis pigmentosa (RP), carry a mutation of Rhodopsin gene that can be activated by brief exposure to very intense light. Here, we test the possibility of an anatomical, metabolic, and functional recovery by delivering to degenerating Tvrm4 animals, Myriocin, an inhibitor of ceramide synthesis previously shown to effectively slow down retinal degeneration in rd10 mutants (Strettoi et al., 2010; Piano et al., 2013). Different routes and durations of Myriocin administration were attempted by using either single intravitreal (i.v.) or long-term, repeated intraperitoneal (i.p.) injections. The retinal function of treated and control animals was tested by ERG recordings. Retinas from ERG-recorded animals were studied histologically to reveal the extent of photoreceptor death. A correlation was observed between Myriocin administration, lowering of retinal ceramides, and preservation of ERG responses in i.v. injected cases. Noticeably, the i.p. treatment with Myriocin decreased the extension of the retinal-degenerating area, preserved the ERG response, and correlated with decreased levels of biochemical indicators of retinal oxidative damage. The results obtained in this study confirm the efficacy of Myriocin in slowing down retinal degeneration in genetic models of RP independently of the underlying mutation responsible for the disease, likely targeting ceramide-dependent, downstream pathways. Alleviation of retinal oxidative stress upon Myriocin treatment suggests that this molecule, or yet unidentified metabolites, act on cellular detoxification systems supporting cell survival. Altogether, the pharmacological approach chosen here meets the necessary pre-requisites for translation into human therapy to slow down RP.
Tvrm4小鼠是常染色体显性遗传性视网膜色素变性(RP)的模型,其视紫红质基因发生突变,短暂暴露于极强光线下即可被激活。在此,我们通过向退化的Tvrm4动物递送麦角硫因来测试解剖学、代谢和功能恢复的可能性,麦角硫因是一种神经酰胺合成抑制剂,先前已证明其可有效减缓rd10突变体的视网膜退化(斯特雷托伊等人,2010年;皮亚诺等人,2013年)。通过单次玻璃体内(i.v.)注射或长期重复腹腔内(i.p.)注射尝试了不同的麦角硫因给药途径和持续时间。通过视网膜电图(ERG)记录测试治疗组和对照组动物的视网膜功能。对ERG记录动物的视网膜进行组织学研究,以揭示光感受器死亡的程度。在玻璃体内注射的病例中,观察到麦角硫因给药、视网膜神经酰胺水平降低与ERG反应的保留之间存在相关性。值得注意的是,腹腔注射麦角硫因治疗减少了视网膜退化区域的范围,保留了ERG反应,并与视网膜氧化损伤生化指标水平降低相关。本研究获得的结果证实了麦角硫因在减缓RP遗传模型中视网膜退化方面的有效性,而与导致该疾病的潜在突变无关,可能靶向神经酰胺依赖性下游途径。麦角硫因治疗后视网膜氧化应激的减轻表明,该分子或尚未鉴定的代谢产物作用于支持细胞存活的细胞解毒系统。总之,这里选择的药理学方法满足了转化为人类治疗以减缓RP的必要先决条件。