Oxford University Clinical Academic Graduate School, John Radcliffe Hospital, Oxford OX3 9DU, UK; Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK.
Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford OX3 7JX, UK.
Pharmacol Ther. 2020 Aug;212:107557. doi: 10.1016/j.pharmthera.2020.107557. Epub 2020 May 8.
There is increasing interest in clinical prediction models in psychiatry, which focus on developing multivariate algorithms to guide personalized diagnostic or management decisions. The main target of these models is the prediction of treatment response to different antidepressant therapies. This is because the ability to predict response based on patients' personal data may allow clinicians to make improved treatment decisions, and to provide more efficacious or more tolerable medications to the right patient. We searched the literature for systematic reviews about treatment prediction in the context of existing treatment modalities for adult unipolar depression, until July 2019. Treatment effect is defined broadly to include efficacy, safety, tolerability and acceptability outcomes. We first focused on the identification of individual predictor variables that might predict treatment response, and second, we considered multivariate clinical prediction models. Our meta-review included a total of 10 systematic reviews; seven (from 2014 to 2018) focusing on individual predictor variables and three focusing on clinical prediction models. These identified a number of sociodemographic, phenomenological, clinical, neuroimaging, remote monitoring, genetic and serum marker variables as possible predictor variables for treatment response, alongside statistical and machine-learning approaches to clinical prediction model development. Effect sizes for individual predictor variables were generally small and clinical prediction models had generally not been validated in external populations. There is a need for rigorous model validation in large external data-sets to prove the clinical utility of models. We also discuss potential future avenues in the field of personalized psychiatry, particularly the combination of multiple sources of data and the emerging field of artificial intelligence and digital mental health to identify new individual predictor variables.
人们对精神病学中的临床预测模型越来越感兴趣,这些模型专注于开发多变量算法,以指导个性化的诊断或管理决策。这些模型的主要目标是预测不同抗抑郁治疗方法的治疗反应。这是因为根据患者的个人数据预测反应的能力可能使临床医生能够做出更好的治疗决策,并为合适的患者提供更有效或更耐受的药物。我们在 2019 年 7 月之前,针对成人单相抑郁症的现有治疗方式,对治疗预测的系统综述进行了文献检索。治疗效果被广泛定义为包括疗效、安全性、耐受性和可接受性的结果。我们首先专注于识别可能预测治疗反应的个体预测变量,其次,我们考虑了多变量临床预测模型。我们的元综述共纳入了 10 项系统综述;其中 7 项(来自 2014 年至 2018 年)专注于个体预测变量,3 项专注于临床预测模型。这些研究确定了一些社会人口统计学、现象学、临床、神经影像学、远程监测、遗传和血清标志物变量作为治疗反应的可能预测变量,以及用于临床预测模型开发的统计和机器学习方法。个体预测变量的效应大小通常较小,临床预测模型通常尚未在外部人群中得到验证。需要在大型外部数据集上进行严格的模型验证,以证明模型的临床实用性。我们还讨论了个性化精神病学领域的潜在未来方向,特别是结合多种数据来源和人工智能及数字心理健康的新兴领域,以识别新的个体预测变量。