Suppr超能文献

用于估计情绪、焦虑或精神障碍患者治疗结果的外部验证临床预测模型:系统评价和荟萃分析

Externally validated clinical prediction models for estimating treatment outcomes for patients with a mood, anxiety or psychotic disorder: systematic review and meta-analysis.

作者信息

Burghoorn Desi G, Booij Sanne H, Schoevers Robert A, Riese Harriëtte

机构信息

University Medical Center Groningen, Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), University of Groningen, Groningen, The Netherlands.

出版信息

BJPsych Open. 2024 Dec 5;10(6):e221. doi: 10.1192/bjo.2024.789.

Abstract

BACKGROUND

Suboptimal treatment outcomes contribute to the high disease burden of mood, anxiety or psychotic disorders. Clinical prediction models could optimise treatment allocation, which may result in better outcomes. Whereas ample research on prediction models is performed, model performance in other clinical contexts (i.e. external validation) is rarely examined. This gap hampers generalisability and as such implementation in clinical practice.

AIMS

Systematically appraise studies on externally validated clinical prediction models for estimated treatment outcomes for mood, anxiety and psychotic disorders by (1) reviewing methodological quality and applicability of studies and (2) investigating how model properties relate to differences in model performance.

METHOD

The review and meta-analysis protocol was prospectively registered with PROSPERO (registration number CRD42022307987). A search was conducted on 8 November 2021 in the databases PubMED, PsycINFO and EMBASE. Random-effects meta-analysis and meta-regression were conducted to examine between-study heterogeneity in discriminative performance and its relevant influencing factors.

RESULTS

Twenty-eight studies were included. The majority of studies ( = 16) validated models for mood disorders. Clinical predictors (e.g. symptom severity) were most frequently included ( = 25). Low methodological and applicability concerns were found for two studies. The overall discrimination performance of the meta-analysis was fair with wide prediction intervals (0.72 [0.46; 0.89]). The between-study heterogeneity was not explained by number or type of predictors but by disorder diagnosis.

CONCLUSIONS

Few models seem ready for further implementation in clinical practice to aid treatment allocation. Besides the need for more external validation studies, we recommend close examination of the clinical setting before model implementation.

摘要

背景

治疗效果欠佳导致了情绪、焦虑或精神障碍的高疾病负担。临床预测模型可以优化治疗分配,这可能会带来更好的结果。虽然对预测模型进行了大量研究,但很少考察其在其他临床环境中的表现(即外部验证)。这一差距阻碍了模型的通用性,进而影响其在临床实践中的应用。

目的

通过(1)评估研究的方法学质量和适用性,以及(2)研究模型属性与模型性能差异之间的关系,系统评价关于情绪、焦虑和精神障碍估计治疗结果的外部验证临床预测模型的研究。

方法

该综述和荟萃分析方案已在PROSPERO(注册号CRD42022307987)上进行了前瞻性注册。2021年11月8日在PubMed、PsycINFO和EMBASE数据库中进行了检索。采用随机效应荟萃分析和荟萃回归来检验研究间在判别性能及其相关影响因素方面的异质性。

结果

纳入了28项研究。大多数研究(n = 16)验证了情绪障碍模型。临床预测因素(如症状严重程度)最常被纳入(n = 25)。两项研究的方法学和适用性问题较少。荟萃分析的总体判别性能一般,预测区间较宽(0.72 [0.46; 0.89])。研究间的异质性不是由预测因素的数量或类型解释的,而是由疾病诊断解释的。

结论

很少有模型似乎准备好在临床实践中进一步应用以辅助治疗分配。除了需要更多的外部验证研究外,我们建议在模型实施前仔细检查临床环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6316/11698186/07b860b9c9a4/S2056472424007890_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验