Suppr超能文献

基于不完全不平衡纵向数据的膝关节骨关节炎进展的多分类器预测。

Multi-classifier prediction of knee osteoarthritis progression from incomplete imbalanced longitudinal data.

机构信息

School of Computing Science, Newcastle University, 1 Science Square, Newcastle, NE4 5TG, UK.

Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands.

出版信息

Sci Rep. 2020 May 21;10(1):8427. doi: 10.1038/s41598-020-64643-8.

Abstract

Conventional inclusion criteria used in osteoarthritis clinical trials are not very effective in selecting patients who would benefit from a therapy being tested. Typically majority of selected patients show no or limited disease progression during a trial period. As a consequence, the effect of the tested treatment cannot be observed, and the efforts and resources invested in running the trial are not rewarded. This could be avoided, if selection criteria were more predictive of the future disease progression. In this article, we formulated the patient selection problem as a multi-class classification task, with classes based on clinically relevant measures of progression (over a time scale typical for clinical trials). Using data from two long-term knee osteoarthritis studies OAI and CHECK, we tested multiple algorithms and learning process configurations (including multi-classifier approaches, cost-sensitive learning, and feature selection), to identify the best performing machine learning models. We examined the behaviour of the best models, with respect to prediction errors and the impact of used features, to confirm their clinical relevance. We found that the model-based selection outperforms the conventional inclusion criteria, reducing by 20-25% the number of patients who show no progression. This result might lead to more efficient clinical trials.

摘要

在骨关节炎临床试验中使用的传统纳入标准在选择可能从正在测试的治疗中受益的患者方面效果并不理想。通常情况下,大多数入选的患者在试验期间没有或仅有有限的疾病进展。因此,无法观察到测试治疗的效果,并且投入运行试验的努力和资源也没有得到回报。如果选择标准更能预测未来的疾病进展,就可以避免这种情况。在本文中,我们将患者选择问题表述为一个多类分类任务,其类别基于与进展相关的临床指标(在临床试验的典型时间尺度上)。我们使用来自两个长期膝关节骨关节炎研究 OAI 和 CHECK 的数据,测试了多种算法和学习过程配置(包括多分类器方法、代价敏感学习和特征选择),以确定性能最佳的机器学习模型。我们检查了最佳模型的行为,包括预测误差和使用特征的影响,以确认其临床相关性。我们发现基于模型的选择优于传统的纳入标准,可以将没有进展的患者数量减少 20-25%。这一结果可能会导致更有效的临床试验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e687/7242357/0e98ffbae2f6/41598_2020_64643_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验